

A Kishore Kumar
@akcube:matrix.org
Github: @akcube
Email: a.kishorekumar@students.iiit.ac.in, kishash22@gmail.com
Pursuing B.Tech Honors in Computer Science & Engineering @ IIIT - Hyderabad

Background Information

EDUCATIONAL BACKGROUND

I’m currently pursuing a B.Tech in Honors in Computer Science and Engineering at the

International Institute of Information Technology, Hyderabad (IIIT - H). I’m in my second year and

the relevant courses I have taken are Computer Systems and Organization (CSO), Operating

Systems & Networking (OSN) and Software Programming for Performance (SPP). I have also

audited the course on Compilers. I am a part of my university’s Computer Systems Group Lab and

conduct research on parallelizing algorithms in the bioinformatics space and compilers.

PROGRAMMING BACKGROUND & INTERESTS

OSS projects I have contributed to include maintaining the websites of two of my university’s club

websites and helping host a discord bot. I would like to get more involved with the world of OSS

through GSoC. I enjoy taking part in optimization contests and love working on low-level, HPC

code. More on this in previous work.

INTEREST IN PROJECT

This project focuses heavily on aiding compiler codegen and making conditions favorable for

SIMD parallelization. I’ve spent a lot of time pouring over Agner Fog’s instruction tables and just

love to play around with SIMD and inline assembly to see how small changes can have drastic

performance changes (example: temporal stores vs non-temporal stores). I have also gone

through some material from LLVM’s kaleidoscope tutorial previously. The project fits both my

interests in HPC and Compilers and I feel like I will learn a lot from this project.

PREVIOUS WORK

1.​ I was introduced to the world of HPC 2 years back when I took the Speller problem

(Implementing a fast hashtable) seriously and competed against others. I held the rank #1

spot for around 2 weeks. Now, even after 2 years I hold the #7 rank on the leaderboard. I

mailto:a.kishorekumar@students.iiit.ac.in
mailto:kishash22@gmail.com
https://cs50.harvard.edu/x/2021/psets/5/speller/
https://speller.cs50.net/cs50/problems/2020/x/challenges/speller

learnt a lot of things about SIMD, cache coherence and spent enough time

micro-optimizing to learn not to do it again :)

2.​ As a pet project I decided to start working on my own implementation of a BLAS

conforming library called KBLAS. I wrote my own benchmark library, to generate test data,

verification data and benchmark code. I used ideas of data parallelization (SIMD intrinsics

for vectorization and OpenMP for thread-parallelization) to beat the BLIS library and

CBLAS by good margins. It also contains code related to roofline-analysis where I wrote

benchmarks to extract the maximum possible bandwidth from my system & tuning the

Stream benchmark. I was able to beat even my tuned Stream benchmark by ~5GBPS

using SIMD reads and compiler tricks.

I documented my entire journey and relevant benchmark data here in my Notion site. The

graphs which are labeled “Final implementation of xyz” are the final results I was able to

obtain. Although I did rely on some architecture specific information such as hardcoded

cache sizes I intend on making it more easily configurable in the future. (Note: This is an

ongoing project and will be updated whenever I find time)

3.​ I have also worked on modifying the MIT xv6-riscv operating system as part of my OSN

course to implement different types of schedulers. I had to solve multiple thread

synchronization issues while implementing this project.

PLANS BEYOND GSoC

I’ll be honest and admit that I found out about GSoC and HPX pretty late in the process. HPC and

parallelization is my favorite field to explore and work with in Computer Science. I discovered

HPX recently, but instantly liked and agreed with many of the points in the ParalleX model of

parallelization. Latency due to data transfer and thread sync barriers are two huge obstacles I

have encountered in the past and I really like how ParalleX suggests using constraint based

synchronization and latency hiding to solve these problems. I would like to learn more about

them and work on implementing real code to demonstrate the usability of these techniques. The

to-do list here is massive and I’d love to keep working on checking off more boxes even after

GSoC. The few people I have interacted with made me feel welcome and helped me out a lot

despite my last-minute showing. I find the community in general very supportive and would

definitely love to keep working with them.

https://github.com/akcube/kBLAS
https://www.cs.virginia.edu/stream/
https://brass-collar-d40.notion.site/Optimizing-BLIS-f7d754020cc2452f8fdfdbc760e458e1
https://github.com/akcube/xv6-riscv
https://github.com/STEllAR-GROUP/hpx/issues/2333

SELF ASSESSMENT

-​ C++ : 5/5​ ​ ​ ​ ​ ​ | C / C++ are my primary languages

-​ C++ Standard Library : 5/5

-​ Boost C++ Libraries : 2.5/5

I have limited experience using the boost library but I’m willing to put in the time to learn and get familiar with it.

-​ Git distributed source code control system : 5/5​ | Daily driver

Familiar software development environment: CLion

Familiar software documentation tool: Doxygen

PARALLEL MATRIX MULTIPLICATION

https://github.com/akcube/hpx_matmul

Conduct a thorough Performance
Analysis on HPX Parallel Algorithms
(and optimize)
19th April 2022

PROBLEM ABSTRACT

C++ 17 introduced the std::execution::par_unseq execution policy. C++ 20 followed up on this with

std::execution::unseq. These execution policies provide us the guarantee that we can interleave

the execution of multiple element access function calls in the same thread.

The image on the right is from Bryce

Lelbach’s talk in cppcon 2016.

To quote P0024R2,

“Vectorization-unsafe standard library

functions may not be invoked by user

code called from

parallel_vector_execution_policy

https://github.com/akcube/hpx_matmul
https://www.youtube.com/watch?v=Vck6kzWjY88
https://www.youtube.com/watch?v=Vck6kzWjY88
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0024r2.html#algorithms.parallel.exec

algorithms.” (par_vec was since renamed to par_unseq)

Parallel algorithms called with this execution policy have the power to auto-vectorize the code

passed to them. The problem I intend on solving is implementing two new policies

hpx::par_unseq and hpx::unseq which should internally exploit this guarantee given to them to

get the compiler to auto-vectorize code whenever possible.

WHY IS THIS SOMETHING WE SHOULD CARE ABOUT?

Using vector intrinsics can give a massive boost in performance on modern CPUs. Data parallel

loops with dependencies that are consistent with the wavefront model can be parallelized via

SIMD. Consider the following loop,

for(int i=0; i<n; i++){

​ x = f(A[i+1]);

​ A[i] = g(x, B[i]);

}

Such a loop cannot be parallelized over threads due to no guarantees on execution order.

However, since it is consistent with the wavefront model we can vectorize such a loop and gain

large performance gains. Not vectorizing is essentially leaving a major part of the performance

we could gain from the CPU die dormant.

TARGET

The primary goal here is auto-vectorization. Different compilers have different loop optimization

passes and these optimizers often work differently. Clang works using the LLVM backend, GCC

has its own backend written from scratch and ICC is developed by intel but it recently adopted

using LLVM backend as well. I do not have much experience with MSVC but am willing to learn

the required details.

Compilers try to recognize vector patterns in code, weight pros and cons and only if they

recognize that the given code can be (provably) vectorized without affecting the serial-outcome

will they vectorize the code. Our job is to provide the compiler with as many hints as possible to

aid them recognize these patterns.

SOLUTION

Auto loop transformations are compiler dependent, hardware dependent and also task

dependent. Getting compilers to generate good vector code by auto-vectorization is truly a

mystic art :) But I believe profiling and analyzing instructions generated will be a good first step.

1.​ Profiling and analyzing: Each of these compilers take hints via different syntax and use

them differently. I plan on first running several micro-benchmarks to test each of the

above-mentioned 4 compilers for their auto-vectorization capabilities and how they

respond to different hints. I believe that profiling and analyzing the assembly they

generate using tools like perf report and Intel VTune will give insightful data about how

the compilers implement auto-vectorization for different hints and tasks. I will also run

them against hand-typed SIMD versions of tasks if necessary to compare peak

performance.

2.​ Removing arch enemies of auto-vectorization: There are certain specific patterns in

code / reasons why compilers do not auto-vectorize code that looks very “vectorize-able”

to a human.

a.​ One of the biggest offenders is aliasing, specifically pointer aliasing. We can add

some checks before the loop body to check for such aliasing (on random access

iterators) and also (if acceptable) use the restrict keyword (compiler specific) to

provide the compiler with information that the pointer arrays are independent.

b.​ Another common enemy is memory alignment. We can try out adding loops in the

beginning / end which when possible perform the computations using scalar

operations till we reach a 16/32-bit boundary separately before entering the main

loop. We can then hint to the compiler that this memory is always aligned to some

memory boundary using compiler specific hints which aid vectorization. Compilers

usually can do this themselves, but to make sure we can use the profiles we have

from step 1 to make accurate decisions.

3. Implement the execution policy: I plan on keeping a draft PR open where I will be

pushing commits, so that the community (and especially the mentors) are aware of what I

am working on and can give me feedback on the same thread. I will post profile results,

take feedback and use this accumulated information to implement the actual execution

policy.

4. Dabble with OpenMP & explicit vectorization libraries: There was concern raised

about using OpenMP previously as it required users to compile with -fopenmp. However,

OpenMP is still one of the best ways to enforce the compiler to vectorize loops which we

know can be vectorized. In the last part of the project I hope to work with and test both

OpenMP and explicit vectorization libraries like VC and std::experimental::simd as

suggested by @srinivasyadav227 on the IRC.

https://en.wikipedia.org/wiki/Aliasing_(computing)

SPECIFICATIONS

Availability: Willing to spend 40 hours a week or more post May 7th. Final semester

examinations at my university conclude on May 7th. I have summer holidays after this and have

no other obligations to attend apart from GSoC should I be given this opportunity.

Location / Timezone: During my vacations I will remain in India (UTC +5:30) until May 29th

(beginning of community bonding period, after which I will be working from Bahrain (UTC +3:00)

till around the end of August (2 month period). After this I will move back to Hyderabad, India

(UTC +5:30).

Communication: I don’t have any personal choices related to communication platforms. I have

accounts on most platforms and wouldn’t mind making a new one if required.

MILESTONES

The following are the milestones I hope to achieve over the course of this project.

Phase 1

For the first phase of evaluations, I plan to have completed the following tasks.

1. Learn the compiler specific syntax and other idiosyncrasies of the MSVC compiler.

2. Profile and analyze the instructions generated by the different compilers in response to

provided hints on various workloads. The goal is to start off with basic operations like dot

product, copy etc. and move on to more HPX targeted workloads. I will use perf and Vtune

primarily to assess output. Vtune and Intel Advisor often give valuable information about useful

hints that can be inserted in code.

Advisor & VTune:

While the advice given by this tool is somewhat specific to the Intel compiler, the same principles

can be extended to work for helping the other compilers auto-vectorize workloads as well. The

advice given by these two tools is pretty much exactly what we need. Pragmas and other hints to

help the compiler auto vectorize some code.

perf on the other hand is able to (with very low overhead) annotate the assembly and quickly let

me explore the generated assembly for different functions. + it fits in my terminal :)

3. Use this data to implement the necessary template overloads for HPX algorithms. The starting

point is for_each. After this I plan on taking community feedback on the implementation and

further improving it before continuing to work on other algorithms. The next algorithms on my

to-do list are: sort and transform. By this time I’m sure the mentors and the community will be able

to further guide me on what other algorithms to work on next.

Final evaluations

For the final evaluations, I will choose either of the following two paths based on mentor

suggestions. I will either continue implementing more algorithms from the to-do list or I will start

exploring the effects of OpenMP directives and libraries like VC to explore the data parallel

transforms we can make on input to aid auto-vectorization. Disclaimer, while I am comfortable

with OpenMP I do not have any experience working with such a library but am definitely

interested in spending as much time as required to understand and work with such a library.

Timeline

An attempt to make-up: Admittedly I have not spent as much time as I'd have liked interacting

with the community. I have gone over half the lectures in the summer series and played around

with the examples in the documentation. This is not much. It is my fault for not being aware of

GSoC related news. I have until the 20th of May before the accepted projects get announced

and university end-semester exams end on 7th May. I intend on using this in-between period to

https://github.com/VcDevel/Vc

further learn and interact with the community and submit micro-patches to small issues to better

familiarize myself with the codebase.

Week 1 [May 20th - May 28th]

1. During this community bonding period I primarily wish to talk to the mentors and other

contributors about which algorithms are the most important to implement auto-vectorization hints

for first and which tasks they think are good candidates for analyzing compiler responses to hints.

2. Familiarize myself with any new tools or libraries that I have been suggested to learn by other

members of the community

3. Make a to-do list which is a concise representation of the information accumulated during the

interactions and a Kanban board :) I find using them boosts my productivity a lot.

Week 2 [May 29th - June 4th]

I plan on testing all 4 compilers (and more if suggested) on various workloads with different hints

and writing a detailed analysis report which might also serve as a resource to many others who

might work on this project after me and simultaneously push any findings to the draft PR so that

the mentors and other contributors are kept in the loop and can give valuable feedback.

Week 3 [June 5th - June 11th]

I will continue with testing the compilers but this time the focus will be on the HPX codebase.

Optimizing the first function is always the hardest, and for_each is definitely abstract enough to

include a lot of hurdles and discoveries that I will have to account for. Familiarizing myself with

what I will be coding is the primary goal here.

Week 4 [June 12th - June 18th]

I will begin implementing the HPX execution policy for par_unseq for for_each in small

incremental commits and document my progress along the way. Ideally I will finish this by the end

of the week with satisfactory auto-vectorization results.

Week 5 [June 19th - June 25th]

If all goes well and both my work is completed and the community gives a positive response, I’ll

switch to implementing the unseq policy for the same function. I’ll give myself a little free space

here to collect feedback from the community and time to implement the suggested changes.

Week 6 [June 26th - July 2nd]

1. Create tests and documentation for both the execution policies created.

2. Finalize any last changes and polish up the code.

Week 7 [July 3rd - July 9th]

1. Perform any additional tests / analysis required for implementing the policies for sort or

transform. The decision is up to what the community needs next.

2. Start implementing auto-vectorization hints for the second function.

Week 8 [July 10th - July 16th]

Continue working on implementing par_unseq and unseq execution policies for the second

function.

Week 9 [July 17th - July 23rd]

Write tests and relevant documentation for the implementation of the second function (current

idea: sort). Also use this period to implement any suggested changes / ponder over feedback

received.

Week 10 [July 24th - July 30th]

Polish up all code written during the duration of this project, implement any last-minute requested

changes and make sure everything is working for phase 1 evals. This week will also serve as a

buffer week in case things don’t go according to plan in any of the previous weeks and things get

shifted by a week.

Note: In an ideal world I’d attempt to implement transform as well, but at the very least I’d like to

be done with 2 implementations completely.

July 25th - Sept 4th

Implement a third function and choose between either of the two paths mentioned in my

milestones.

	Background Information
	EDUCATIONAL BACKGROUND
	PROGRAMMING BACKGROUND & INTERESTS
	INTEREST IN PROJECT
	PREVIOUS WORK
	PLANS BEYOND GSoC
	SELF ASSESSMENT
	PARALLEL MATRIX MULTIPLICATION
	Conduct a thorough Performance Analysis on HPX Parallel Algorithms (and optimize)
	PROBLEM ABSTRACT
	WHY IS THIS SOMETHING WE SHOULD CARE ABOUT?
	TARGET
	SOLUTION
	SPECIFICATIONS
	MILESTONES
	Phase 1
	Final evaluations
	Timeline

