A Kishore Kumar
@akcube:matrix.org
Github: @akcube

Email: a.kishorekumar@students.iiit.ac.in, kishash22@gmail.com
Pursuing B.Tech Honors in Computer Science & Engineering @ IlIT - Hyderabad

Background Information

EDUCATIONAL BACKGROUND

I’'m currently pursuing a B.Tech in Honors in Computer Science and Engineering at the
International Institute of Information Technology, Hyderabad (IlIT - H). I'm in my second year and
the relevant courses | have taken are Computer Systems and Organization (CSO), Operating
Systems & Networking (OSN) and Software Programming for Performance (SPP). | have also
audited the course on Compilers. | am a part of my university’s Computer Systems Group Lab and

conduct research on parallelizing algorithms in the bioinformatics space and compilers.

PROGRAMMING BACKGROUND & INTERESTS

OSS projects | have contributed to include maintaining the websites of two of my university’s club
websites and helping host a discord bot. | would like to get more involved with the world of OSS
through GSoC. | enjoy taking part in optimization contests and love working on low-level, HPC

code. More on this in previous work.

INTEREST IN PROJECT

This project focuses heavily on aiding compiler codegen and making conditions favorable for
SIMD parallelization. I've spent a lot of time pouring over Agner Fog’s instruction tables and just
love to play around with SIMD and inline assembly to see how small changes can have drastic
performance changes (example: temporal stores vs non-temporal stores). | have also gone
through some material from LLVM’s kaleidoscope tutorial previously. The project fits both my

interests in HPC and Compilers and | feel like | will learn a lot from this project.

PREVIOUS WORK

1. l'was introduced to the world of HPC 2 years back when | took the Speller problem
(Implementing a fast hashtable) seriously and competed against others. | held the rank #1

spot for around 2 weeks. Now, even after 2 years | hold the #7 rank on the |eaderboard. |


mailto:a.kishorekumar@students.iiit.ac.in
mailto:kishash22@gmail.com
https://cs50.harvard.edu/x/2021/psets/5/speller/
https://speller.cs50.net/cs50/problems/2020/x/challenges/speller

learnt a lot of things about SIMD, cache coherence and spent enough time
micro-optimizing to learn not to do it again :)
2. As a pet project | decided to start working on my own implementation of a BLAS

conforming library called KBLAS. | wrote my own benchmark library, to generate test data,

verification data and benchmark code. | used ideas of data parallelization (SIMD intrinsics
for vectorization and OpenMP for thread-parallelization) to beat the BLIS library and
CBLAS by good margins. It also contains code related to roofline-analysis where | wrote
benchmarks to extract the maximum possible bandwidth from my system & tuning the
Stream benchmark. | was able to beat even my tuned Stream benchmark by Y5GBPS

using SIMD reads and compiler tricks.

| documented my entire journey and relevant benchmark data here in my Notion site. The
graphs which are labeled “Final implementation of xyz” are the final results | was able to
obtain. Although | did rely on some architecture specific information such as hardcoded
cache sizes | intend on making it more easily configurable in the future. (Note: This is an

ongoing project and will be updated whenever | find time)

3. | have also worked on modifying the MIT xv6-riscv operating system as part of my OSN
course to implement different types of schedulers. | had to solve multiple thread
synchronization issues while implementing this project.

PLANS BEYOND GSoC

I'll be honest and admit that | found out about GSoC and HPX pretty late in the process. HPC and
parallelization is my favorite field to explore and work with in Computer Science. | discovered
HPX recently, but instantly liked and agreed with many of the points in the ParalleX model of
parallelization. Latency due to data transfer and thread sync barriers are two huge obstacles |
have encountered in the past and | really like how ParalleX suggests using constraint based
synchronization and latency hiding to solve these problems. | would like to learn more about
them and work on implementing real code to demonstrate the usability of these techniques. The
to-do list here is massive and I'd love to keep working on checking off more boxes even after
GSoC. The few people | have interacted with made me feel welcome and helped me out a lot
despite my last-minute showing. | find the community in general very supportive and would
definitely love to keep working with them.


https://github.com/akcube/kBLAS
https://www.cs.virginia.edu/stream/
https://brass-collar-d40.notion.site/Optimizing-BLIS-f7d754020cc2452f8fdfdbc760e458e1
https://github.com/akcube/xv6-riscv
https://github.com/STEllAR-GROUP/hpx/issues/2333

SELF ASSESSMENT

- C++:5/5 | C / C++ are my primary languages
- C++ Standard Library : 5/5
- Boost C++ Libraries : 2.5/5

| have limited experience using the boost library but I’'m willing to put in the time to learn and get familiar with it.

- Git distributed source code control system : 5/5 | Daily driver
Familiar software development environment: CLion

Familiar software documentation tool: Doxygen

PARALLEL MATRIX MULTIPLICATION

https://github.com/akcube/hpx_matmul

Conduct a thorough Performance
Analysis on HPX Parallel Algorithms
(and optimize)

19" April 2022

PROBLEM ABSTRACT

C++ 17 introduced the std::execution::par_unseq execution policy. C++ 20 followed up on this with
std:iexecution::unseq. These execution policies provide us the guarantee that we can interleave

the execution of multiple element access function calls in the same thread.

The image on the right is from Bryce std: :par std: :par_unseq
) . load x[i ] to a scalar register load x[i ] to a scalar register
Lelbach’s talk in ¢ con 2016. load y[i ] to a scalar register load x[i+1] to a scalar register
multiply x[i ] and y[i ] load x[i+2] to a scalar register
store the result to x[I ] load x[i+3] to a scalar register
TO quote P0024R2, load x[i+1] to a scalar register load y[i ] to a scalar register
load y[i+1] to a scalar register load y[i+1] to a scalar register
multiply x[i+1] and y[i+1] load y[i+2] to a scalar register
“Vectorizatl'on_unsafe standard /ibfary store the result to x[i+1] load y[i+3] to a scalar register
load x[i+2] to a scalar register multiply x[i ] and y[i ]
; ; load y[i+2] to a scalar register multiply x[i+1] and y[i+1]
fUFICtIOI’lS may not be InVOked by user multiply x[i+2] and y[i+2] multiply x[i+2] and y[i+2]
store the result to x[i+2] multiply x[i+3] and y[i+3]
COde Ca/led from load x[i+3] to a scalar register store the result to x[1 ]
. . load y[i+3] to a scalar register store the result to x[i+1]
PGI’G//G/_VeCtOf_eX@CUT/ON_PO//Cy multiply x[i+3] and y[i+3] store the result to x[i+2]

store the result to x[i+3] store the result to x[i+3]


https://github.com/akcube/hpx_matmul
https://www.youtube.com/watch?v=Vck6kzWjY88
https://www.youtube.com/watch?v=Vck6kzWjY88
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0024r2.html#algorithms.parallel.exec

algorithms.” (par_vec was since renamed to par_unseq)

Parallel algorithms called with this execution policy have the power to auto-vectorize the code
passed to them. The problem | intend on solving is implementing two new policies
hpx::par_unseq and hpx::unseq which should internally exploit this guarantee given to them to
get the compiler to auto-vectorize code whenever possible.

WHY IS THIS SOMETHING WE SHOULD CARE ABOUT?

Using vector intrinsics can give a massive boost in performance on modern CPUs. Data parallel
loops with dependencies that are consistent with the wavefront model can be parallelized via
SIMD. Consider the following loop,
for(int i=0; i<n; i++){

x = f(A[iI+1]);

Ali] = g(x, BIi]);
}
Such a loop cannot be parallelized over threads due to no guarantees on execution order.
However, since it is consistent with the wavefront model we can vectorize such a loop and gain
large performance gains. Not vectorizing is essentially leaving a major part of the performance
we could gain from the CPU die dormant.

TARGET

The primary goal here is auto-vectorization. Different compilers have different loop optimization
passes and these optimizers often work differently. Clang works using the LLVM backend, GCC
has its own backend written from scratch and ICC is developed by intel but it recently adopted
using LLVM backend as well. | do not have much experience with MSVC but am willing to learn
the required details.

Compilers try to recognize vector patterns in code, weight pros and cons and only if they
recognize that the given code can be (provably) vectorized without affecting the serial-outcome
will they vectorize the code. Our job is to provide the compiler with as many hints as possible to
aid them recognize these patterns.

SOLUTION

Auto loop transformations are compiler dependent, hardware dependent and also task
dependent. Getting compilers to generate good vector code by auto-vectorization is truly a
mystic art :) But | believe profiling and analyzing instructions generated will be a good first step.



Profiling and analyzing: Each of these compilers take hints via different syntax and use
them differently. | plan on first running several micro-benchmarks to test each of the
above-mentioned 4 compilers for their auto-vectorization capabilities and how they
respond to different hints. | believe that profiling and analyzing the assembly they
generate using tools like perf report and Intel VTune will give insightful data about how
the compilers implement auto-vectorization for different hints and tasks. | will also run
them against hand-typed SIMD versions of tasks if necessary to compare peak
performance.

Removing arch enemies of auto-vectorization: There are certain specific patterns in
code / reasons why compilers do not auto-vectorize code that looks very “vectorize-able”
to a human.

a. One of the biggest offenders is aliasing, specifically pointer aliasing. We can add
some checks before the loop body to check for such aliasing (on random access
iterators) and also (if acceptable) use the restrict keyword (compiler specific) to
provide the compiler with information that the pointer arrays are independent.

b. Another common enemy is memory alignment. We can try out adding loops in the
beginning / end which when possible perform the computations using scalar
operations till we reach a 16/32-bit boundary separately before entering the main
loop. We can then hint to the compiler that this memory is always aligned to some
memory boundary using compiler specific hints which aid vectorization. Compilers
usually can do this themselves, but to make sure we can use the profiles we have
from step 1to make accurate decisions.

3. Implement the execution policy: | plan on keeping a draft PR open where | will be
pushing commits, so that the community (and especially the mentors) are aware of what |
am working on and can give me feedback on the same thread. | will post profile results,
take feedback and use this accumulated information to implement the actual execution

policy.

4. Dabble with OpenMP & explicit vectorization libraries: There was concern raised
about using OpenMP previously as it required users to compile with -fopenmp. However,
OpenMP is still one of the best ways to enforce the compiler to vectorize loops which we
know can be vectorized. In the last part of the project | hope to work with and test both
OpenMP and explicit vectorization libraries like VC and std::experimental::simd as

suggested by @srinivasyadav227 on the IRC.


https://en.wikipedia.org/wiki/Aliasing_(computing)

SPECIFICATIONS

Availability: Willing to spend 40 hours a week or more post May 7th. Final semester
examinations at my university conclude on May 7th. | have summer holidays after this and have
no other obligations to attend apart from GSoC should | be given this opportunity.

Location / Timezone: During my vacations | will remain in India (UTC +5:30) until May 29th
(beginning of community bonding period, after which | will be working from Bahrain (UTC +3:00)
till around the end of August (2 month period). After this | will move back to Hyderabad, India
(UTC +5:30).

Communication: | don’t have any personal choices related to communication platforms. | have
accounts on most platforms and wouldn’t mind making a new one if required.

MILESTONES

The following are the milestones | hope to achieve over the course of this project.

Phase 1

For the first phase of evaluations, | plan to have completed the following tasks.
1. Learn the compiler specific syntax and other idiosyncrasies of the MSVC compiler.

2. Profile and analyze the instructions generated by the different compilers in response to
provided hints on various workloads. The goal is to start off with basic operations like dot
product, copy etc. and move on to more HPX targeted workloads. | will use perf and Viune
primarily to assess output. Viune and Intel Advisor often give valuable information about useful

hints that can be inserted in code.

Advisor & VTune:

Loop in kbias_sdot_inc1._omp_fn.0

13.210s
V Vectorized (Body) Total time

+ AVX; FMA 13.210s
*ase

Instruction Set  Self time

¥ Static Instruction Mix Summary™
» Memory 35% (6) (D
» Compute 18% (3) @D

Vectorization and Code Insights > Mixed”  35% (6) (D
Other  12%(2) @

CPU Time B Vectarized Loops Instruction Set Analysis =2} B 2]
& Performance Type Why No Vectorization? ‘ —‘ d Location

5] Function Call Sites and Loops Advance
L8 s TotalTime | Self Time v |vecto..| Gain .. [VL(v... | Traits [paaty...|
5110 [loop inread_test_omp_ 0] @] 4,990 NN 49905 I Vectorized (Body) A2 8 NT-stores 32

415 [loop in main] D @ 1 System functi.. 0.470s 1 0.080s( Scalar




i€lbay.nq;: Lee, counter ptles) |
U [Scalar loop im fGetSpeedSite at 1bpSET.cpp:idl0]
Scalar Loop. Bot vectorized: loop comtrol variable was found, but loop iteration count camsot be computed before emecuting che loop
No loop tramsformations were applied

for(int 1=0;

Issue Ineffective peeled/remainder loopis) present

All or some 3ource [Gop Merations are not executing in the [Gop Dody, Imgrove performance by moving sowrce loop iterations from peeled temaingder loops to the loop body,

() Add data padding
The 1rip count ks not a multiple of yegigs lengeh. To fix: Do one of the following

& Increase size of objects and add iterations 3o the trip count is a multiple of vector length.
» Increase the size of static and automatic obpects, and use a compiler option 1o add data paddeng.

. I Linux* OS ]
[ i
Note: These compiler options apply only to el Many integrated Core Architecture (ntel® MIC Architecturel, Option -goot- assume-safe-padding IS the replacement compiles
option for -opt-assume-safe-padding , which Is deprecated.

When you use one of these compiler cptions, the compiler does not add any padding for static and automatic objects, Instead, it assumes that code can access up to 64 bytes beyond
the #nd of the object, wherever the object appears in your applstation, To satssly this Assumption, you Mmust increase the size of SLAUC and autormans obmcts in your application,

Optional: Specify the trip count, if it 1s not constant, using directive
ICL/ICC/ICPC Directive DRT Directive

Read More:
. == or User and Beference Cuide for the intel Fortran Compiier 15,0 > Compg Op > Comp ¥
9 and De > Ad el { > qopl-assume- sale-padding, Qopt-assume-sale-padding
* umibizing Full Veciors and Use of Option -Qopt-dssume- sale-padding
. P > Comg i > Prag > Intel-specific Pragma Reference > loop_count
* User and Reference Gusge for the intel Fortran Compeler 13.0 > Languags fi e > Ao Z Ref: e > ] to L » LOOF COUNT
* Getling Started with Intel Compales Pragmis and Directives

While the advice given by this tool is somewhat specific to the Intel compiler, the same principles
can be extended to work for helping the other compilers auto-vectorize workloads as well. The
advice given by these two tools is pretty much exactly what we need. Pragmas and other hints to
help the compiler auto vectorize some code.

perf on the other hand is able to (with very low overhead) annotate the assembly and quickly let
me explore the generated assembly for different functions. + it fits in my terminal :)



Samples: 81K of event 'cycles:u', Event count (approx.): 83319016155
Children Self Command Shared Object Symbol

97.49% mGBPS mGBPS [.] read test. omp_fn.@

3. Use this data to implement the necessary template overloads for HPX algorithms. The starting
point is for_each. After this | plan on taking community feedback on the implementation and
further improving it before continuing to work on other algorithms. The next algorithms on my
to-do list are: sort and transform. By this time I'm sure the mentors and the community will be able

to further guide me on what other algorithms to work on next.

Final evaluations

For the final evaluations, | will choose either of the following two paths based on mentor
suggestions. | will either continue implementing more algorithms from the to-do list or | will start
exploring the effects of OpenMP directives and libraries like VC to explore the data parallel
transforms we can make on input to aid auto-vectorization. Disclaimer, while | am comfortable
with OpenMP | do not have any experience working with such a library but am definitely

interested in spending as much time as required to understand and work with such a library.

Timeline

An attempt to make-up: Admittedly | have not spent as much time as I'd have liked interacting
with the community. | have gone over half the lectures in the summer series and played around
with the examples in the documentation. This is not much. It is my fault for not being aware of
GSoC related news. | have until the 20th of May before the accepted projects get announced

and university end-semester exams end on 7th May. | intend on using this in-between period to


https://github.com/VcDevel/Vc

further learn and interact with the community and submit micro-patches to small issues to better
familiarize myself with the codebase.

Week 1[May 20th - May 28th]

1. During this community bonding period | primarily wish to talk to the mentors and other
contributors about which algorithms are the most important to implement auto-vectorization hints

for first and which tasks they think are good candidates for analyzing compiler responses to hints.

2. Familiarize myself with any new tools or libraries that | have been suggested to learn by other
members of the community

3. Make a to-do list which is a concise representation of the information accumulated during the
interactions and a Kanban board :) | find using them boosts my productivity a lot.

Week 2 [May 29th - June 4th]

| plan on testing all 4 compilers (and more if suggested) on various workloads with different hints
and writing a detailed analysis report which might also serve as a resource to many others who
might work on this project after me and simultaneously push any findings to the draft PR so that

the mentors and other contributors are kept in the loop and can give valuable feedback.

Week 3 [June 5th - June 11th]

I will continue with testing the compilers but this time the focus will be on the HPX codebase.
Optimizing the first function is always the hardest, and for_each is definitely abstract enough to
include a lot of hurdles and discoveries that | will have to account for. Familiarizing myself with

what | will be coding is the primary goal here.
Week 4 [June 12th - June 18th]

I will begin implementing the HPX execution policy for par_unseq for for_each in small
incremental commits and document my progress along the way. Ideally | will finish this by the end

of the week with satisfactory auto-vectorization results.
Week 5 [June 19th - June 25th]

If all goes well and both my work is completed and the community gives a positive response, I'll
switch to implementing the unseq policy for the same function. I'll give myself a little free space
here to collect feedback from the community and time to implement the suggested changes.

Week 6 [June 26th - July 2nd]

1. Create tests and documentation for both the execution policies created.



2. Finalize any last changes and polish up the code.
Week 7 [July 3rd - July 9th]

1. Perform any additional tests / analysis required for implementing the policies for sort or
transform. The decision is up to what the community needs next.

2. Start implementing auto-vectorization hints for the second function.
Week 8 [July 10th - July 16th]

Continue working on implementing par_unseq and unseq execution policies for the second
function.

Week 9 [July 17th - July 23rd]

Write tests and relevant documentation for the implementation of the second function (current
idea: sort). Also use this period to implement any suggested changes / ponder over feedback
received.

Week 10 [July 24th - July 30th]

Polish up all code written during the duration of this project, implement any last-minute requested
changes and make sure everything is working for phase 1 evals. This week will also serve as a
buffer week in case things don’t go according to plan in any of the previous weeks and things get
shifted by a week.

Note: In an ideal world I'd attempt to implement transform as well, but at the very least I'd like to
be done with 2 implementations completely.

July 25th - Sept 4th

Implement a third function and choose between either of the two paths mentioned in my

milestones.



TASKS MONTH 1 MONTH 2
Community interaction and concise to-

do list

Testing compilers and  preparing

analysis report

Implement par_unseq and unseq for

for_each + optimize

Create tests and docs for the above

Implement par_unseq and unseq for ——
sort + optimize

Write docs and tests for the above —

Implement any final changes and polish
up codebase for phase 1 evals

Choose one of the two paths based on
mentor and community feedback and
explore

MONTH 3

MONTH 4




	Background Information 
	EDUCATIONAL BACKGROUND 
	PROGRAMMING BACKGROUND & INTERESTS 
	INTEREST IN PROJECT 
	PREVIOUS WORK 
	PLANS BEYOND GSoC 
	SELF ASSESSMENT  
	PARALLEL MATRIX MULTIPLICATION 
	Conduct a thorough Performance Analysis on HPX Parallel Algorithms (and optimize) 
	PROBLEM ABSTRACT 
	WHY IS THIS SOMETHING WE SHOULD CARE ABOUT? 
	TARGET 
	SOLUTION 
	SPECIFICATIONS 
	MILESTONES 
	Phase 1 
	Final evaluations 
	Timeline 


