
Design Document for Publication
Workflows
This document looks at some possible designs to allow remotely stored datasets. It’s written as
part of implementing issue #3561. The idea is to have a framework that’s more flexible than
strictly required by #3561, allowing Dataverse to support multiple remote systems and various
scenarios.

Goal
Allow extensible workflow for publishing datasets. The workflow has to support external
systems, including waiting for them to successfully finish a task. The system also needs to
support recovery, in case of external system failure. Additional design goal is to allow workflows
from other scenarios in the application.

Model Description
Each Dataset is associated with a workflow for publishing a new version. Exactly how this
association is made is left to decision point 1. A `Workflow` is just an ordered list of
`WorkflowStepData`, a record-like object that can be used to instantiate a `WorkflowStep`
object. `WorkflowStep` objects perform the actual workflow steps.

Executing a workflow step has three possible outcomes:

●​ OK - success, workflow can move on to next step
●​ Failure - Step failed (with some failure data provided). Workflow has to be rolled back.
●​ Pending - Step has to wait for an external system to return some result. This result

includes a localData field, that will be passed to the step when it is resumed.

External systems return results by sending a HTTP POST request to a new API endpoint. The
body of the result is then passed to the step in order to resume its execution. Resuming a
workflow step can have the same three results mentioned above, and they are treated the same
way.

After the workflow completes, the dataset status is changed to published.

https://github.com/IQSS/dataverse/issues/3561

Starting a Publication Workflow

Resuming a Publication Workflow
The external system have received a request with a unique ID, and returned a HTTP POST with
that id in the URL, and some (optional) response body. The POST request is received by a new
API endpoint, that finds the pending workflow in the database and resumes it.

Adding Support for a New Set of Tools
This is done by implementing the WorkflowStepSPI, and registering the provider instance with
the WorkflowBean at startup (similar to identity providers etc.)

Changes to Dataverse
●​ Add a “LockReason” enum

○​ (none) - dataset is not locked
○​ Ingest (currently a boolean field)
○​ InReview (currently a boolean field)
○​ InPublicationProcess

●​ Add a "Publication Error" status to Dataset. Also needs a place to see what the error
was.

●​ Add a way to manage workflows (API only) [DONE]
●​ Add an API way of inspecting current workflow status
●​ Need UI team:

○​ Add a "current workflow status" to the UI (?)
○​ Add a workflow error screen to the UI, allowing the user to find out why a certain

workflow failed.

Proposed UI for a locked dataset upon generic reason for locking:

Current UI for a locked dataset upon tabular file ingest:

Decision Points
1.​ Associating datasets and publication workflows:

a.​ installation-wide
b.​ directly
c.​ By dataverse
d.​ By dataverse, plus inheritance from parent dataverses ← Nice to have
e.​ By dataverse, plus inheritance from parent dataverses and local overrides

i.​ in practice, this adds the workflow reference field to
theDvObjectContainer class, so as easy as “c”.

2.​ Current design is only for pre-publish workflows. We can add post-publish workflows as
well. Should we add workflows for other stages of the dataset lifecycle?

a.​ Answer - post-harvest is on the horizon. Others may follow. Keep this as general
as possible.

3.​ Data type for localData:
a.​ String
b.​ Blob
c.​ Map<String,String>

d.​ JSON I tend to go with the map, as it offers a nice middle-ground between
non-stuctured (string/blob) and fully structured bug hard to traverse (json).

4.​ Data type for remoteData:
a.​ String
b.​ Blob
c.​ JSON

I tend to go with String. String is more generic, and allows JSON where needed. But also
keeps the simple cases simple.

5.​ API Endpoint security - preventing attacks from the API endpoint. I’m not sure this would
be a high-value target, plus the attacker has to know the id of the step being resumed to
be successful. Still, some precautions should probably be taken. Options:

a.​ None - attacker has to know the step UUID, so we got some basic level anyway
b.​ Whitelist IP addresses, manage it using the SETTINGS api. [DONE]
c.​ System-wide token
d.​ Step id/remote token pair: Have a token for each registered remote system. Each

pending step knows which system it waits for, and so when the reply comes (with
the system’s token) we can check that the token matches the expected one.

	Design Document for Publication Workflows
	Goal
	Model Description
	Starting a Publication Workflow
	
	Resuming a Publication Workflow
	Adding Support for a New Set of Tools
	Changes to Dataverse
	Decision Points

