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To run the charts, you need xchart. Download the jar file from 
https://knowm.org/open-source/XChart/ and place it into the project folder. 
Then, in IntelliJ, go to Project Structure > Libraries 
Click the + icon and search for knowm.xchart, select the most recent version of xchart. 
You should now be able to run the charts 
 
 
ATTRIBUTION FOR AMENDMENTS MADE, 2ND OPP​
​
Rory : Removed old commented code for Fractional Knapsack’s Brute Force & polished 
up final report’s Fractional Brute Force.​
​
Rojee : Cleaned up UML & polished up final report’s Fractional Greedy Method.​
​
Edale : Polished up final report’s 01 Dynamic Programming.​
​
Kelvin : Fixed 01 Knapsack’s Brute Force, removed old commented code and polished up 
final report’s 01 (Brute Force + Greedy Method). 
 

https://knowm.org/open-source/XChart/


 
 
01 Knapsack Problem​
 
Brute Force​
Time complexity for Brute Force is О(n x 2n).​
Brute Force is the algorithm/approach that should take the longest to iterate through as ALL 
possible combinations are tried. This exploration also guarantees that the optimal solution is 
found.​
Empirical results are almost as expected. As the knapsack’s size increased, runtime increased 
exponentially as knapsack 5 took significantly longer than knapsack 4 and same with 6 
compared with 5. However there was an anomaly in the empirical findings between knapsacks 1 
- 3. 1 took the most time out of the 3 despite being the smallest knapsack. Runtime data 
produced for knapsacks 4,5 and 6 were as expected, making a significant leap from the smaller 
knapsack to the bigger one. I would expect the trend to remain as such if there were more 
knapsacks to solve with increasing sizes. The advantage for using Brute Force would be that it 
guarantees an optimal solution. Disadvantage is that using Brute Force is unsuitable for large 
problem sizes due to exponential time complexity which makes it impractical for real-industry 
applications. Not scalable.​
When implementing the Brute Force for the 01 Knapsack, recursion was the approach to 
explore all possible combinations and update an auxiliary data structure called bestChoice. It 
keeps track of the best combination which would be replaced by a better combo (if found) as the 
recursion progressed. In the recursion, an array of bits called itemInKnapsack exists to indicate 
if an item was to be included in the current combination being worked on. 1 for inclusion and 0 
exclusion. Once the recursion was complete and the bit representation for the best combination 



was located, items were added into a List of Items called the bestCombo in accordance with 
bestChoice which signals if an item is to be added into the optimal combination. We are now left 
with the optimal solution to the knapsack.​
 
 
Greedy​
Time complexity for the Greedy Method is О(n x log(n)).​
Greedy algorithms make locally optimal choices at each step which aims for a solution that 
seems like the best solution in the short term. However, it means that this approach does not 
always lead to an optimal solution. ​
Empirical results were not aligned with theoretical results which was quite interesting to find. I 
was expecting the runtimes to increase as the sizes of the knapsack increased, however 
empirical findings show that it fluctuated at certain points. The smallest knapsack 1 was the 
slowest and knapsack 5 was the fastest. Not entirely sure if hardware might be a cause to this, 
but my educated analysis on this finding is that the capacity of the knapsacks would be the 
culprit in this trend. However, utilizing the greedy method is definitely scalable.​
The process for Knapsack 01 Problem’s Greedy Method was fairly straightforward. Calculated 
the ratios as needed and used those values to sort the array of Items in the Knapsack in 
decreasing order. Given that both Knapsack Problems have Greedy Methods, we then moved 
the ratio calculation out to the Item class by implementing comparable. We could then leverage 
the compareTo( ) method as needed in both Greedy Methods for 01 and Fractional Knapsacks 
to sort the array. Using the now sorted in descending order according to the ratio array, items 
are added into the Knapsack until we face an item which would exceed the Knapsack’s capacity 
if added. We would then traverse the rest of the items available to see if anything else might fit 
and continue with this approach until the capacity is hit or we are out of items. Now we have our 
Knapsack filled as much as possible with items of the better ratios. 
 
Dynamic Programming 
 

The dynamic process starts by initializing a matrix with zeros and then systematically filling it in, 
considering various combinations of items and capacities. At each step, the algorithm calculates 
the maximum value achievable with or without including the current item in the knapsack. The 
decision to include or exclude an item depends on which option yields a higher total value. By 
evaluating these options for each item and capacity, the algorithm determines the optimal 
combination of items to maximize value while staying within the knapsack's weight limit.  

Time complexity of Dynamic Knapsack 01 is O(nW) where n is the number of items and W is the 
capacity of the knapsack. As the number of items and the capacity of the knapsack increase, the 
runtime increases, but not exponentially. In the experiment, it generally takes more time 
compared to the Greedy approach, but less time compared to the Brute Force approach. The 
Dynamic Knapsack 01 approach strikes a balance between optimality and runtime efficiency, 
making it suitable for solving the Knapsack problem in practice.  

 



The Greedy approach is fast but may not always give the best solution, while the Brute Force 
approach is slow and inefficient, especially for larger problem sets.  

 

 
 
Fractional Knapsack Problem 
Brute Force 
 
The brute force approach of the fractional knapsack problem not only compares all possible 
combinations of items / subsets of the set of usable items, but also all possible fractions of each 
item, to find the maximum profit. Because brute force cannot use a greedy approach to decide 
which items to include, it must compare every possible combination, so it is much slower than 
the greedy and dynamic algorithms, which can be seen on the graph, other than the last 
knapsack brute force which took so long we were unable to graph it. 
 
We used a recursive function that explores all possible combinations of fractions of items to find 
the optimal solution by returning the profit for that combination and comparing the result. Once 
the current attempt runs out of items to process or remaining capacity in the knapsack, the profit 
is returned (base case). Otherwise, the function considers excluding the current item and 
moving to the next index, compared to adding various fractions of the item (which we limited to 
hundredths n / 100 using a loop in order to limit how long the algorithm took to complete) to the 



knapsack and recursively exploring the consequences. The final result is the maximum profit 
achievable by considering all possible combinations of fractions of items.The time complexity for 
brute force is O(2^n). 
 
From both the theoretical understanding of brute force and real results in microseconds (brute 
force took several minutes to execute per knapsack, when it completed at all), the brute force 
solution is much slower than greedy, and should not be used if possible. 
 
Greedy 
The greedy approach for the fractional knapsack problem involves selecting items with the 
highest total benefit, ensuring that the combined weight does not exceed the knapsack capacity, 
W. To achieve this, we calculate the value-to-weight ratio (value/weight) for each item and 
arrange the items in descending order based on this ratio. Subsequently, we add items to the 
knapsack starting with the highest ratio until the capacity is fully utilized, incorporating whole 
items whenever possible.If an item can fit entirely, it is added whole but if the knapsack is not 
completely filled, a fraction of the item with the highest remaining ratio is added to maximize the 
overall benefit. This strategy optimally utilizes the knapsack capacity to obtain the maximum 
total value.The time complexity for this knapsack is O(n log n). From the graph, we can see that 
greedy is the fastest algorithm that can run because it does not have to go through all possible 
choices. 
 
In the Fractional Knapsack experiment, the comparison between the brute force and greedy 
algorithms generally aligns with the theoretical expectations, where the brute force algorithm 
exhibits a longer runtime compared to the greedy algorithm. This is consistent with the 
understanding that the brute force approach has an exponential time complexity of O(2^n), while 
the greedy algorithm has a polynomial time complexity of O(n log n). 
 
In 01 Knapsack, Brute force, where we check every possible combination of items, takes the 
longest time. As we add more items, it gets even slower. This is what we'd expect because 
checking all combinations becomes much harder as there are more items to consider. 
 
The greedy algorithm, which makes the best choice at each step, is faster. Its speed grows more 
slowly as we add more items. So, even though it might not always give the best solution, it's 
quick and often works well enough. 
 
Dynamic programming falls in between. It's slower than the greedy approach but faster than 
brute force. As we add more items, it takes longer to run, but not as much as brute force. It's like 
finding a balance between speed and accuracy by solving smaller problems first and then 
combining their solutions to find the best overall solution. 
 



Overall, the choice of algorithm for the knapsack problem depends on the specific requirements 
of the problem instance. Greedy algorithms offer speed but may sacrifice optimality, while 
dynamic programming provides a balance between speed and accuracy. Brute force remains the 
most reliable option for ensuring the optimal solution but may become impractical for larger 
problem sizes due to its exponential runtime growth. 
 
 
 
 
 
 
 
Graph for all Algorithm 
 
 

 
 
Made adjustments to the units in run time for the Brute Force Algorithm and indicated the change in the bar chart 
legend. 
 
 
Analytical and Theoretical Analysis 
 
The Knapsack 01 Experiment Chart indicates that the dynamic 01 knapsack is more efficient 
than brute force but slower than greedy algorithms. However, we know that the greedy method 



does not guarantee an optimal solution.​
In the Fractional Knapsack Experiment Chart, the greedy program shows it's faster than brute 
force, and the results indicate that Fractional Knapsack tends to be faster than Knapsack01. 

Dynamic programming for 0/1 knapsack has a time complexity of O(nW), where n is the number 
of items and W is the capacity of the knapsack. Greedy algorithms generally have a time 
complexity of O(n log n), and brute force for 0/1 knapsack has an exponential time complexity, 
typically O(n * 2^n). For fractional knapsack algorithms, greedy usually has a time complexity of 
O(n log n), and brute force is O(2^n).  

The actual runtimes align with the expected trends based on theoretical analysis. Dynamic 
programming and greedy algorithms are significantly faster than brute force, confirming their 
expected efficiencies. Brute force, while conceptually simple, becomes impractical due to its 
exponential time complexity. Greedy algorithms provide fast solutions but may not always 
guarantee the optimal solution for 0/1 knapsack problem. The dynamic approach to the 
knapsack algorithm provides optimal solutions for 0/1 but has relatively slower computation time 
for fractional, compared to greedy.  

In summary, the choice of the algorithm depends on various factors, including the size of the 
problem instance, the type of problem (0/1 vs fractional), the need for optimality, and available 
computational resources. Dynamic programming is preferable for larger instances requiring 
optimal solutions, while greedy algorithms offer fast solutions with acceptable optimality 
guarantees in certain scenarios. Brute force is usually impractical except for very small 
instances due to its exponential time complexity. 


