## **Practice - Geometric Sequences - Nth Term Formula**

## \* Key Problems:

Solve problems 1, 4, 6, 7

Do more if you want more practice.

Use the N<sup>th</sup> Term formula for geometric sequences.

$$u_n = u_1 \cdot r^{n-1}$$

- 1 A geometric sequence has the form 4, 8, 16, ...
- a State the common ratio for this sequence.
  - **b** Calculate the 20th term of this sequence.
- **2** A geometric sequence has the form 6, 2,  $\frac{2}{3}$ , ...
  - a State the common ratio for this sequence.
  - **b** Calculate the 10th term of this sequence.
- **3** A geometric sequence has the form 1280, –640, 320, –160, ...
  - a State the common ratio for this sequence.
  - **b** Find the 8th term of this sequence.
- **4** A geometric sequence has all its terms positive.

The first term is 5 and the third term is 20.

- a Find the common ratio.
- **b** Find the 7th term of this sequence.
- 5 The second term of a geometric sequence is 18 and the fourth term is  $\frac{81}{2}$ .

All the terms in the sequence are positive.

- a Calculate the value of the common ratio.
- **b** Find the 8th term in the sequence.
- **6** Consider the geometric sequence -16, a, -4, ... for which the common ratio is  $\frac{1}{2}$ .
  - **a** Find the value of a.
  - **b** Find the value of the eighth term.
- **7** The second term of a geometric sequence is 18 and the fourth term is 8.

All the terms are positive.

Find the value of the common ratio.

- **8** A geometric sequence has all its terms positive. The first term is 12 and the third term is 48.
  - Find the common ratio.
  - **b** Find the 12th term.

## **SOLUTIONS:**

**1 a** 
$$r = \frac{8}{4} = 2$$
 **b**  $u_{20} = 4(2)^{19} = 2097152$ 

**2 a** 
$$r = \frac{2}{6} = \frac{1}{3}$$
 **b**  $u_{10} = 6\left(\frac{1}{3}\right)^9 = 0.000305 = \frac{2}{6561}$ 

**3 a** 
$$r = -\frac{640}{1280} = -0.5$$
 **b**  $u_8 = 1280(-0.5)^7 = -10$ 

**4 a** 
$$u_1 = 5 u_3 = 5r^2 = 20$$
  
 $r^2 = \frac{20}{5} = 4$   
 $r = 2$ 

**b** 
$$u_7 = 5(2)^6 = 320$$

5 **a** 
$$u_2 = u_1 r = 18$$
  $u_4 = u_1 r^3 = \frac{81}{2}$ 

$$\frac{u_1 r^3}{u_1 r} = \frac{81}{2} \times \frac{1}{18} = 2.25$$

$$r^2 = 2.25$$

$$r = 1.5$$

**b** 
$$u_1 = \frac{18}{r} = \frac{18}{1.5} = 12$$

$$u_8 = 12(1.5)^7 = 205.03125$$

**6 a** 
$$a = -16 \times \frac{1}{2} = -8$$

**b** 
$$u_s = -16\left(\frac{1}{2}\right)^7 = -0.125$$

7 
$$u_2 = u_1 r = 18$$
  $u_4 = u_1 r^3 = 8$    
 $\frac{u_1 r^3}{u_1 r} = \frac{8}{18} = \frac{4}{9}$    
 $r^2 = \frac{4}{9}$    
 $r = \frac{2}{3}$ 

8 a 
$$u_1 = 12 u_3 = u_1 r^2 = 48$$
  
 $12r^2 = 48$   
 $r^2 = \frac{48}{12} = 4$   
 $r = 2$ 

**b** 
$$u_{12} = 12(2)^{11} = 24576$$