
What to do about sun.misc.Unsafe and Pals?

27 October 2015
Edited by Martijn Verburg - 28 October 2018

 Contributors:

 Greg Luck, Hazelcast, EC Representative
Chris Engelbert, Hazelcast, EC Representative

Martijn Verburg, LJC, jClarity, Java Champion, EC Representative
Ben Evans, LJC, jClarity, Java Champion, EC Representative

Gil Tene, Azul Systems EC Representative
Peter Lawrey, Higher Frequency Trading, Java Champion

Rafael Winterhalter, Bouvet ASA
Richard Warburton, Monotonic Ltd.

Henri Tremblay, Java Champion, as Himself

Status: Final

Status

27th of October 2015 - Final document shared with the community at that time.
28th of October 2018 - Minor edits made before continued discussion within the Java
Champions group.

Disclaimer

This document is NOT an official Oracle document. It neither was started nor influenced by
Oracle or its employees. It was started as a community effort to raise awareness of the possible
problems that arose from an early proposal (JEP 260 now supersedes that earlier plan) for Java
9 to remove or hide access to sun.misc.Unsafe and other internal unsupported APIs.

The purpose of this document is to feature an overview of the current situation and the possible,
publicly available solutions that are proposed and matches them against the
sun.misc.Unsafe (and friends) feature set.

http://openjdk.java.net/jeps/260

Table of Contents

Status

Disclaimer

Table of Contents

Summary

Current Challenges
Widespread Community use of sun.misc.Unsafe - a proprietary API
Community use of other (sun.*) internal proprietary APIs
Why JEP 260 is needed

JNI is not a viable replacement
Missing Cross-Vendor Specification for 'safe' Unsafe features

Uses of sun.misc.Unsafe
Examples of projects/products using Unsafe

Uses of sun.nio.ch.FileChannelImpl.*
Examples of projects/products using sun.nio.ch.FileChannelImpl

Uses of sun.nio.ch.DirectBuffer.*
Examples of projects/products using sun.nio.ch.DirectBuffer

Uses of sun.misc.Cleaner
Examples of projects/products using sun.misc.Cleaner

GAP Analysis of Features <-> JEPs
JEPs - Possible Replacements for some aspects of Unsafe
A mapping of Unsafe Features to JEPs / Features

Fields in sun.misc.Unsafe

sun.misc.Unsafe Features in detail
allocateInstance

Usage
Possible replacements

Working Group
Working Group Members

The proposal from Mark Reinhold, Chief Architect
Status of Implementation of this Solution (Updated 27 October 2015)

-XX Flag to allow Unsafe Access
Current sun.misc.Unsafe in Java 9 Trunk

1

Summary

sun.misc.Unsafe is an unsupported API which has popular usage in the industry but it is not
an official standard for Java SE. There are plans for its gradual encapsulation and
removal/deprecation under the modularization efforts for Java SE 9 (See JEP 260). This is
deemed to be "a good thing" in general.

Many organizations and framework, library, product owners have stated they will be unable to
move to Java SE 9 without some sort of replacement for some of the 'safe' sun.misc.Unsafe
features.

While normally the community at large should work on and propose JEPs through OpenJDK to
provide the same functionality as the 'safe' parts of sun.misc.Unsafe, it is generally
acknowledged that there will not be enough time for this before Java SE 9 is feature complete
(~Nov 2015 - hence the compromise that is proposed through JEP 260). One of the main
purposes of this document is to map out features currently used versus their proposed
replacements (if any exist).

Current Challenges

Widespread Community use of sun.misc.Unsafe - a proprietary API

sun.misc.Unsafe has wide traction in common Java frameworks and applications. Most
applications, at least indirectly, depend on some library that uses Unsafe to speed up one thing
or another.

In fact, even standard libraries such as java.util.concurrent depend upon pieces of
Unsafe (such as park and CAS operations) for which there is no realistic alternative.

Over time, Unsafe has become a “dumping ground” for non-standard, yet necessary, methods
for the platform, with useful methods that are relatively safe in experienced hands (such as the
CAS operations) being lumped in with low-level methods that are of no real use to library
developers.

Community use of other (sun.*) internal proprietary APIs

Several products/projects use sun.nio.* APIs for fast low-level data transfer, especially in
combination with sun.misc.Unsafe calls.

TODO Flesh out this section

Why JEP 260 is needed

Access to sun.misc.Unsafe was slated to be restricted in the upcoming Java 9 release as
part of Project Jigsaw. This would have 'out of the box' broken many products/projects.

2

http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

JNI is not a viable replacement

While additional JNI libraries could provide the same functionality as Unsafe, such libraries
would need to provide 32-bit and 64-bit implementations as well as Windows and Linux
variations. This would have been less safe than the Unsafe class in Java 8, or a potential
replacement in Java 9, as each framework would have to offer its own implementation. To
achieve comparable performance, more functionality would need to be migrated into C. e.g. an
operation to read or write a String in UTF-8 format to/from native memory can be written in Java
currently and achieve near C speeds, but without the intrinsic available in Unsafe, such an
operation would have to be written in JNI to avoid crossing the JNI barrier too many times.

Missing Cross-Vendor Specification for 'safe' Unsafe features

The current sun.misc.Unsafe class is not specified. Content changes from version to version
and vendor to vendor. Cross-JVM implementations need to check for a lot of circumstances to
make sure the Unsafe based implementation works on most JVMs.

Uses of sun.misc.Unsafe

Broadly speaking sun.misc.Unsafe is used for:

●​ Mocking Classes
●​ Low, very predictable latencies (low GC overhead)
●​ Fast de-/serialization
●​ Thread safe 64-bit sized native memory access (for example off-heap)
●​ Atomic memory operations
●​ Efficient object/memory layouts
●​ Fast access
●​ Custom memory fences
●​ Fast interaction with native code
●​ Multi-operating system replacement for JNI.
●​ “Type hijacking” of classes for type-safe APIs without calling a constructor.
●​ Access to array items with volatile semantic
●​ Uniform representation of memory chunks in byte arrays and direct buffers

Examples of projects/products using Unsafe

●​ MapDB
●​ Netty
●​ Hazelcast
●​ Cassandra
●​ Mockito / EasyMock / JMock / JMock
●​ Scala Specs
●​ Spock

3

●​ Robolectric
●​ Grails
●​ Gson
●​ Neo4j
●​ Apache Hadoop
●​ Apache Ignite
●​ Apache Spark
●​ Apache Kafka
●​ Apache Wink
●​ Apache Storm
●​ Apache Flink
●​ Apache Continuum
●​ Zookeeper
●​ Dropwizard
●​ Metrics (AOP)
●​ Kryo
●​ ByteBuddy
●​ Hibernate
●​ Liquibase
●​ Spring Framework (via Objenesis, with a fallback)
●​ Ehcache (sizeof)
●​ OrientDB
●​ Chronicle (OpenHFT)
●​ Apache Hadoop, Apache HBase (hadoop based database)
●​ GWT
●​ Disruptor
●​ JRuby
●​ Scala
●​ Akka
●​ Real Logic Agrona
●​ Aeron
●​ Simple Binary Encoding
●​ XRebel
●​ Presto (Slice, jol)
●​ Quartet FS ActivePivot (Off-Heap memory management)
●​ LWJGL (graphics library used by Minecraft)
●​ XAP
●​ XStream
●​ CapLogic
●​ WildFly
●​ Infinispan

See also Use at Your Own Risk: The Java Unsafe API in the Wild.

4

https://github.com/OpenHFT/Chronicle-Core/blob/master/src/main/java/net/openhft/chronicle/core/UnsafeMemory.java
http://www.inf.usi.ch/faculty/lanza/Downloads/Mast2015a.pdf

Uses of sun.nio.ch.FileChannelImpl.*

The following internal APIs are used in combination with Unsafe but are in addition to the
Unsafe class. Currently, the only alternative is to use JNI (as these methods do)

sun.nio.ch.FileChannelImpl.map0 - to map in 64 bit regions
sun.nio.ch.FileChannelImpl.unmap0 - to unmap 64 bit regions.

If there was a 64-bit version of MappedByteBuffer, these wouldn’t be needed.

Examples of projects/products using sun.nio.ch.FileChannelImpl

●​ Chronicle Core - for mapping > 31-bit sizes.
●​ one-nio
●​ CapLogic
●​ LevelDB
●​ Neo4J

Uses of sun.nio.ch.DirectBuffer.*

The following methods can be replaced via reflection, however, using an API (even an
internal one) is nicer.

sun.nio.ch.DirectBuffer.address() to get the address of a ByteBuffer
sun.nio.ch.DirectBuffer.cleaner() to release memory deterministically.

In low GC systems, by design, you cannot assume that the GC will run often or
regularly. Ideally, the system should run for 24 hours to a week between minor GCs. If
you are producing < 700 KB/s of garbage this is possible. In such an environment, with
the bulk of your data off-heap, you need to be able to clean up these resources directly.

Examples of projects/products using sun.nio.ch.DirectBuffer

●​ Chronicle Bytes
●​ Apache Spark
●​ Kryo
●​ Cassandra

5

https://github.com/OpenHFT/Chronicle-Core/blob/master/src/main/java/net/openhft/chronicle/core/OS.java#L195
https://github.com/odnoklassniki/one-nio/blob/master/src/one/nio/mem/MappedFile.java
https://github.com/caplogic/Mappedbus/blob/master/src/main/io/mappedbus/MemoryMappedFile.java
https://searchcode.com/codesearch/view/14827286/
https://github.com/OpenHFT/Chronicle-Bytes/blob/master/src/main/java/net/openhft/chronicle/bytes/NativeBytesStore.java
http://fossies.org/diffs/spark/1.2.1_vs_1.3.0/core/src/main/scala/org/apache/spark/storage/BlockManager.scala-diff.html
http://kryo.googlecode.com/svn-history/r399/trunk/src/com/esotericsoftware/kryo/util/UnsafeUtil.java
http://grepcode.com/file/repo1.maven.org/maven2/org.apache.cassandra/cassandra-all/2.1.2/org/apache/cassandra/io/util/FileUtils.java

Uses of sun.misc.Cleaner

sun.misc.Cleaner is used to handle cleanup of memory allocated via Unsafe

There is no alternative using reflection or JNI. In some cases reflection is used to get the
Cleaner from ByteBuffer, in some cases, a cast to sun.nio.ch.DirectBuffer is used and
in some cases, Cleaners are created directly.

Examples of projects/products using sun.misc.Cleaner

●​ Chronicle Bytes - NativeBytesStore
●​ Netbeans
●​ Quartet FS (Probably)
●​ Netty and IntelliJ
●​ JDBM
●​ Apache Lucene
●​ Kryo
●​ VoltDB
●​ cleakka
●​ SAP (Probably)
●​ jMonkeyEngine
●​ fqueue
●​ imageio-ext
●​ exs-aion-emu
●​ Aeron
●​ Agrona

6

https://github.com/OpenHFT/Chronicle-Bytes/blob/master/src/main/java/net/openhft/chronicle/bytes/NativeBytesStore.java
https://bugs.openjdk.java.net/browse/JDK-8051843
http://stackoverflow.com/questions/17671066/java-direct-memory-using-sun-misc-cleaner-in-custom-classes
http://programcreek.com/java-api-examples/index.php?api=sun.misc.Cleaner
http://www.javased.com/?api=sun.misc.Cleaner
https://github.com/apache/lucene-solr/blob/9396de0e5de5e0ceafd7982618e29b7cb9afc735/lucene/core/src/java/org/apache/lucene/store/MMapDirectory.java
https://code.google.com/p/kryo/source/browse/trunk/src/com/esotericsoftware/kryo/util/UnsafeUtil.java?r=371
http://voltdb.com/blog/voltdb-native-memory-and-you
http://hackersome.com/p/ngocdaothanh/cleakka
http://lxs647.iteye.com/blog/936187
https://github.com/jMonkeyEngine/jmonkeyengine/blob/master/jme3-core/src/main/java/com/jme3/util/BufferUtils.java#L1307
https://code.google.com/p/fqueue/source/browse/trunk/src/main/java/com/google/code/fqueue/util/MappedByteBufferUtil.java
ftp://asapdata.arc.nasa.gov/outgoing/Ivanpah_2011/code/java/imageio-ext/imageio-ext-1.1-RC1-src/imageio-ext-library/jmatio/src/main/java/com/jmatio/io/MatFileReader.java
https://github.com/zhouxiaoxiaoxujian/exs-aion-emu/blob/master/AL-Game/src/com/aionemu/gameserver/geoEngine/GeoWorldLoader.java
https://github.com/real-logic/Aeron
https://github.com/real-logic/Agrona

GAP Analysis of Features <-> JEPs

Here's an attempt to look at what JEPs would need to be raised to provide safe, support
versions of existing 'safe' sun.misc.Unsafe features.

JEPs - Possible Replacements for some aspects of Unsafe

Green = Already available / will be available in Java 9 / 10
Orange = May be available in Java 9 / 10
Red = Unknown

Proposal Expected in Java 9 Expected in Java 10

VarHandle
(with uses suggested in JEP 193)

Yes, although the MemoryModel
update is still draft and
VarHandle depends on it.

-

Project Panama (JFFI, JEP 191) No Yes

Serialization 2.0 (JEP 187) No (JEP disappeared (wayback
machine)

No

ValueTypes (no JEP) No Maybe

Arrays 2.0 (no JEP) No Maybe

Variable Object Layout (no JEP) No No

Extending Field / Array reflection
access

Not yet discussed Not yet discussed

A mapping of Unsafe Features to JEPs / Features

TODO Need to look at the OpenJDK 8 implementation

In OpenJDK 7 sun.misc.Unsafe consisted of 105 methods. These subdivide into a few groups of
important methods for manipulating various entities. Here are some of the main groupings:

Off-heap memory access is the number one used feature, followed by Memory Information.

Green = Full Replacement
Orange = Possible Replacement (partly replacing the functionality)
Red = None

7

http://www.oracle.com/technetwork/java/jvmls2014sandoz-2265216.pdf
http://openjdk.java.net/projects/panama/
http://openjdk.java.net/jeps/191
http://www.oracle.com/technetwork/java/jvmls2014sandoz-2265216.pdf
http://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187
http://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187
http://cr.openjdk.java.net/~jrose/values/values-0.html
http://cr.openjdk.java.net/~jrose/pres/201207-Arrays-2.pdf
http://www.docjar.com/docs/api/sun/misc/Unsafe.html

For the current status of Java 9 Unsafe changes, see the trunk source:

http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/
Unsafe.java

Feature sun.misc.Unsafe Usage​
Google Search
Results$

Java 9 / 10
replacement?

Memory Information addressSize
pageSize

17,700​
65,800

Unknown

Objects allocateInstance
objectFieldOffset

5,290
2,820

Reflection (Field),
JEP 193?

Classes staticFieldOffset
defineClass
defineAnonymousClass
ensureClassInitialized

2,820
11,400
2,350
2,760

Unknown

Arrays arrayBaseOffset
arrayIndexScale

1,560
4,960

Reflection (Array),
Enhanced Volatiles -
JEP 193?

Synchronization monitorEnter
tryMonitorEnter
monitorExit
park
unpark

4,680
2,360
14,700
N/A
13,200

Existing Java syntax
and libraries.​
​
park / unpark by using
LockSupport

“Safe Unsafe”
On-heap Object
access

Note: All other
access operations
(e.g. getX/putX with
address argument)
are currently invalid
(as in “will cause
random heap
corruption”) for
on-heap object
access

Unordered field access:
 getX(Object o, ...)
 putX(Object o, ...)
Volatile/ordered field access:
 getXVolatile
 putXVolatile
 putOrderedX
Atomics:
 compareAndSwapX
 getAndAddX
 getAndSetX

copyMemory(src, .., dst,
..)
setMemory(Object o, …)

26.300 (object)​
5.420 (object)

3.350 (object)
3.110 (object)
4.030 (int)

3.800 (int)
1.010 (int)
290 (int)

19.400

19.900

￼Unknown

8

http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/Unsafe.java
http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/Unsafe.java

Off-heap Memory
access

 allocateMemory
 freeMemory
 copyMemory
 setMemory
 getAddress
Unordered field access:
 getX(long address, …)
 putX(long address, …)
Volatile/ordered field access:
 getXVolatile(0, …)
 putXVolatile(0, …)
 putOrderedX(0, …)
Atomics:
 compareAndSwapX(0, ...)
 getAndAddX(0, …)
 getAndSetX(0, …)

39,200
122,000
19.400
19.900
10.600

26.300 (object)
5.420 (object)

3.350 (object)
3.110 (object)
4.030 (int)

3.800 (int)
1.010 (int)
290 (int)

￼Unknown

Fences storeFence
readFence
fullFence

1.820
202
1.900

￼Unknown

$ An indicator of popularity ​ ​

9

Fields in sun.misc.Unsafe

INVALID_FIELD_OFFSET This constant differs from all results that will ever be
returned from #staticFieldOffset , #objectFieldOffset , or
#arrayBaseOffset .

ARRAY_BOOLEAN_BASE_OFFSET The value of {@code arrayBaseOffset(boolean[].class)}

ARRAY_BYTE_BASE_OFFSET The value of {@code arrayBaseOffset(byte[].class)}

ARRAY_SHORT_BASE_OFFSET The value of {@code arrayBaseOffset(short[].class)}

ARRAY_CHAR_BASE_OFFSET The value of {@code arrayBaseOffset(char[].class)}

ARRAY_INT_BASE_OFFSET The value of {@code arrayBaseOffset(int[].class)}

ARRAY_LONG_BASE_OFFSET The value of {@code arrayBaseOffset(long[].class)}

ARRAY_FLOAT_BASE_OFFSET The value of {@code arrayBaseOffset(float[].class)}

ARRAY_DOUBLE_BASE_OFFSET The value of {@code arrayBaseOffset(double[].class)}

ARRAY_OBJECT_BASE_OFFSET The value of {@code arrayBaseOffset(Object[].class)}

ARRAY_BOOLEAN_INDEX_SCALE The value of {@code arrayIndexScale(boolean[].class)}

ARRAY_BYTE_INDEX_SCALE The value of {@code arrayIndexScale(byte[].class)}

ARRAY_SHORT_INDEX_SCALE The value of {@code arrayIndexScale(short[].class)}

ARRAY_CHAR_INDEX_SCALE The value of {@code arrayIndexScale(char[].class)}

ARRAY_INT_INDEX_SCALE The value of {@code arrayIndexScale(int[].class)}

ARRAY_LONG_INDEX_SCALE The value of {@code arrayIndexScale(long[].class)}

ARRAY_FLOAT_INDEX_SCALE The value of {@code arrayIndexScale(float[].class)}

ARRAY_DOUBLE_INDEX_SCALE The value of {@code arrayIndexScale(double[].class)}

ARRAY_OBJECT_INDEX_SCALE The value of {@code arrayIndexScale(Object[].class)}

ADDRESS_SIZE The value of {@code addressSize()}

sun.misc.Unsafe Features in detail

allocateInstance

We will detail here the case of allocateInstance. This method is used to create a Java
class without calling any constructor. Calling the default constructor of the Object class to
create another class brings the same result.

Note: The way the serialization mechanism creates an object is close to this. However, it calls
the constructor of the first non-serializable class -which is frequently Object.

10

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#staticFieldOffset
http://www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset
http://www.docjar.com/docs/api/sun/misc/Unsafe.html#arrayBaseOffset

Usage

Not calling a constructor is useful for 3 use-cases
●​ Mocking: Mocking frameworks want to be able to create fake objects with a recorder

instead of a real behavior. They are usually found during unit testing but could also be
used for stubbing in later test phases. They should not be needed in a production
environment

●​ Serialization: Serialization frameworks want to be able to bypass constructors instead
of forcing to have a default constructor. This is a legitimate request since the Java
serialization is allowed to do so

●​ Proxying: A proxy wants to add some behavior to a class dynamically. They should
extend the original class and delegate to it. However, calling a constructor when creating
a proxy is useless and possibly not working

Possible replacements

There are currently many ways in the OpenJDK to do the same thing as allocateInstance.
●​ sun.reflect.ReflectionFactory.newConstructorForSerialization

provides a Constructor that will instantiate any class by calling Object default
constructor

●​ Writing the actual bytecode of a class but do not call any super constructor in its
constructor. This will only work when -Xverify:none is specified

●​ Writing the bytecode of a class extending sun.reflect.MagicAccessorImpl. This
class will be allowed to instantiate another class by calling Object default constructor

Currently, ReflectionFactory is a good candidate as a replacement. An unverified
benchmark is showing that it is much faster. The class could be moved to a java.* package
and the feature become official. Accessing the single instance of the class is protected by the
security manager using the reflectionFactoryAccess right.

11

https://github.com/easymock/objenesis/blob/master/benchmark/src/main/java/org/objenesis/benchmark/CreateObject.java
https://github.com/easymock/objenesis/blob/master/benchmark/src/main/java/org/objenesis/benchmark/CreateObject.java

Working Group

In order to propose sane replacements in OpenJDK via the JEP process, there needs to be
some serious analysis from the industry at large. Here is an (incomplete) list of
people/organizations who will assist in the GAP analysis.

Working Group Members

Geir Magnusson
London JUG - Martijn Verburg & Ben Evans
Hazelcast Inc. - Greg Luck and Chris Engelbert
Credit Suisse
Microdoc - Hendrik
Azul - Gil Tene
Goldman Sachs - John Weir
Fujitsu - Maike De Nicol
SouJava
Eclipse Software Foundation
DataStax - Jonathan Ellis and Ariel Weisberg
Chronicle Software - Peter Lawrey

The community at large is also welcome to join in.

The mailing list is java9unsafe@googlegroups.com.

12

mailto:java9unsafe@googlegroups.com

The proposal from Mark Reinhold, Chief Architect

Mark Reinhold’s proposal is detailed in
http://mail.openjdk.java.net/pipermail/jigsaw-dev/2015-August/004433.html

"It's well-known that some popular libraries make use of a few of these
internal APIs, such as sun.misc.Unsafe, to invoke methods that would be
difficult, if not impossible, to implement outside of the JDK. To ensure
the broad testing and adoption of the release we propose to treat these
critical APIs as follows:

 - If it has a supported replacement in JDK 8 then we will encapsulate
 it in JDK 9;

 - If it does not have a supported replacement in JDK 8 then we will not
 encapsulate it in JDK 9, so that it remains accessible to outside
 code; and, further,

 - If it has a supported replacement in JDK 9 then we will deprecate it
 in JDK 9 and encapsulate it, or possibly even remove it, in JDK 10.

The critical internal APIs proposed to remain accessible in JDK 9 are
listed in JEP 260 [2]. Suggested additions to the list, justified by
real-world use cases and estimates of developer and end-user impact,
are welcome.

Please also see an updated http://openjdk.java.net/jeps/260 which states:

The critical internal APIs proposed to remain accessible in JDK 9 are:

●​ sun.misc.Cleaner
●​ sun.misc.{Signal, SignalHandler}
●​ sun.misc.Unsafe (The functionality of many of the methods in this class is now available

via variable handles (JEP 193).)
●​ sun.reflect.Reflection::getCallerClass (The functionality of this method may be provided

in a standard form via JEP 259.)
●​ sun.reflect.ReflectionFactory"

Status of Implementation of this Solution (Updated 27 October 2015)

-XX Flag to allow Unsafe Access

Nothing yet.

13

http://mail.openjdk.java.net/pipermail/jigsaw-dev/2015-August/004433.html
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

Current sun.misc.Unsafe in Java 9 Trunk

http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/
Unsafe.java

14

http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/Unsafe.java
http://hg.openjdk.java.net/jdk9/dev/jdk/file/8271f42bae4a/src/java.base/share/classes/sun/misc/Unsafe.java

	What to do about sun.misc.Unsafe and Pals?
	Status
	Disclaimer
	
	Table of Contents
	Summary
	Current Challenges
	Widespread Community use of sun.misc.Unsafe - a proprietary API
	Community use of other (sun.*) internal proprietary APIs
	Why JEP 260 is needed
	JNI is not a viable replacement

	Missing Cross-Vendor Specification for 'safe' Unsafe features

	Uses of sun.misc.Unsafe
	Examples of projects/products using Unsafe

	Uses of sun.nio.ch.FileChannelImpl.*
	Examples of projects/products using sun.nio.ch.FileChannelImpl

	Uses of sun.nio.ch.DirectBuffer.*
	Examples of projects/products using sun.nio.ch.DirectBuffer

	
	Uses of sun.misc.Cleaner
	Examples of projects/products using sun.misc.Cleaner

	
	GAP Analysis of Features <-> JEPs
	JEPs - Possible Replacements for some aspects of Unsafe
	A mapping of Unsafe Features to JEPs / Features

	
	
	
	Fields in sun.misc.Unsafe

	sun.misc.Unsafe Features in detail
	allocateInstance
	Usage
	Possible replacements

	
	Working Group
	Working Group Members

	
	The proposal from Mark Reinhold, Chief Architect
	Status of Implementation of this Solution (Updated 27 October 2015)
	-XX Flag to allow Unsafe Access
	Current sun.misc.Unsafe in Java 9 Trunk

