Xin Zhong
Log of Python for Image Processing

Matlab is convenient for image processing. However, Matlab is not open source, and mainly
focus on research. Codes on Matlab can be hardly turned into software. So here we use Python
scripts for image processing tasks.

Installation

1. Install python3.
2. Similar to Matlab toolbox, we want python library and package for image processing purpose,
libraries examples

- openCV: mainly on C++, python API updating too slow.

- scikit-image: based on scipy, an image is a numpy array, this looks good, let’s choose
scikit-image for image work. So we need scipy, numpy, matplotlib(for image display), basic
packages:

Install Anaconda (https://www.anaconda.com/download/) to easily get more packages.

Test:
Show Lena and its red channel as gray map:

skimage 10

img = 10.imread()

i0.imshow(img)

10.show()

https://www.anaconda.com/download/

img ¢ =1img|[:,:

i0.imshow(img c)

10.show()

Image Basic

1. read in
An image returned by imread() is a [column, row, 3] numpy array in RGB.

4. image information
(type(img))

(img. shape

(img.s

(img.size)

(img.max(
(img.mean()

5. pixel retrieval

As an numpy array, the retrieval is as img[row, column, channel]. e.g. get the value of row 20,
col 30, green

(img[1)
like Matlab, ““:” means all, RGB channels are

img|:,:,0] # red img|[:,:,1] # green img|:,:

6. pixel modification
e.g. 1: salt and pepper noise

skimage

numpy as np
img = i0.imread(

r,c,d = img.shape

om.randint(0,r), np.random.randint(

img[x.y,:] =

i0.imshow(img)

10.show()

e.g. 2 cropping
10.imshow(img|

10.show()

] # blu

C)

€

e.g. 3 local computation

(img[1:3,1:3,:].sum())
img[1:3,1:3,:].mean())

7. Binarization, 128 as the threshold (first bit plane), vectorized

skimage i0,color
img = io.imread()

img g = color.rgb2gray(img) # rgb2gray normalize the image to [0,1]

img b = np.zeros((img_g.shape) =np.inty)
img b[img g[:.:]> (128/255)] =

i0.imshow(img b —
10.show()

Type and color space

1. Memory space

an image, the numpy array has type of

uint8 [0, 255], uint16 [0, 65535], float [0,1], int8 [-128 127], etc.
typical conversion in skimage:

img_as_float 64 bit [0 1]
img_as_ubyte 8 bit [0 255]
img_as_uint 16 bit [0, 65535]

2. Color space
Note: any conversion in color space change the type to float [0, 1]

Frequent use in package skimage.color (more on
http://scikit-image.org/docs/dev/api/skimage.color.html)

rgb2gray gray scale

gray2rgb amazingly change back...
rgb2lab Lab space

rgb2xyz XYZ spcae

xyz2lab CieLab space

“skimage.color.convert_colorspace” function could call some conversion functions conveniently:

skimage 10, color

img = 10.imread()

cie = color.convert colorspace(img

10.1mshow(cie)

10.show()

conversion color space can be:
['RGB', 'HSV', 'RGB CIE', 'XYZ', "'YUV', 'YIQ', "YPbPr', "'YCbCr']

Labels to color
img = 10.imread(

lg = color.rgb2gray(img)

r, ¢ = lg.shape

labels = np.zeros([r,c])

labels[lg[:,:] >] =

abels[np.logical and(lg[:,:] <

Ic = color.label2rgb(labels)

10.i1mshow(lc)

Matplotlib

Skimage.i0.imshow(), ~.show() and ~.imread() essentially use matplotlib library as the plugin for
image display, like Matlab plot series, matplotlib is good for matrices display.

SO

skimage 10, color

img = 10.imread()

10.imshow(img)

10.show()
is essentially

matplotlib.image as mpimg
matplotlib.pyplot as plt

img = mpimg.imread(
plt.imshow(img)
plt.show()

1. Figure window and subplot
plt.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None)
plt.subplot(row, col, position), position row wisely

plt.show() displays all pending figures, so use it at the end to pop out all the figures one time.

matplotlib.image as mpimg]

img = mpimg.imread(

plt.subplot()

plt.imshow(img]:,:,0]
plt.subplot()

plt.imshow(img|:,:,1]

plt.subplot()

plt.imshow(img]:,:,2]

plt.show()
™

N

§ & 8

(€ +al= B | € Ha= 8

Image Distortion

Skimage.transform http://scikit-image.org/docs/dev/api/skimage.transform.html

1. resize, change to arbitrary size

ts = transform.resize(img,(

skimage.transform.resize(image, output_shape)

2. rescale, change to a factor

tsc = transform.rescale(img,[

skimage.transform.rescale(image, scale], ...])

3. rotation
tr = transform.rotate(img,30)

trf = transform.rotate(img

skimage.transform.rotate(image, angle[, ...])

http://scikit-image.org/docs/dev/api/skimage.transform.html

LI =150 | mles Haz= 5

4. shearing

r,c,d = img.shape

tsh m = transform. A ffineTransform(=sh f)

tsh = transform.warp(img =tsh m =(r,c*(1+sh_f)))

€3 +a= B

5. Affine Distortion
First we try
skimage.transform.AffineTransform(matrix=None, scale=None, rotation=None, shear=None,
translation=None), However this class only supports shearing along x direction.
the transformation matrix is
[sx * math.cos(rotation), -sy * math.sin(rotation + shear), 0]
[sx * math.sin(rotation), sy * math.cos(rotation + shear), 0]
[0, 0, 1]
where sx, sy are scale factors in the x and y direction.

To program general affine distortions (at least supporting y shearing), we first formulate it as: for
each coordinate [X, y, 1], its target is multiplying with the given matrix H:

A B C
D E F
0 0 1
For translate, scale, rotation, and shearing the A — F respectively are:
1 0 Tx Sx 0 0 cos —sin O 1 SHx 0
0 1 Ty 0 Sy O sin cos O SHy 1 0
0 0 1 0 0 1 0 0 1 0 0 1

Having these, we apply skimage.transform.ProjectiveTransform (matrix=None) to seal the matrix

(1) translation, x shift 20 and y shift 30

(2) scale, x to 0.9 and y to 0.75
matrix = np.array([[
tform = transform.ProjectiveTransform(=matrix)

img trans = transform.warp(img, tform.inverse)

plt.imshow(img trans)
plt.xlabel('x")

&l €3 Hal= m o T

Note: function warp accepts the inverse transformation matrix.

(3) rotation, 30 degree clock-wisely
np.array([[math.cos(math.radians(30)),-1*math.sin(math.radians(30))],[math.sin(math.radian
5(30)),math.cos(math.radians(30))

A€ Q=B

(4) shearing, x 0.25y 0.1
matrix = np.array([[

tform = transform.Projective Transform(=matrix)

img trans = transform.warp(img, tform.inverse

1] 1 00 Mg M) 300 0D TOu)
K

€ A= 8B

With ProjectiveTransform and warp that doing the multiplication between H and each
coordinate, we achieved the shearing along y axis ‘<, actually this implementation can use
arbitrary transform matrices.

(5) Put some transformations together, e.g. translation + scale + shearing
matrix1 = np.array([[1.[1.l 1]) # trans

1]) # scale]

]]) # shear

¥ Fopre 1 o % |

o 100 300 300 00 00 G00 o
o

#l€d Fa= B

Thresholding and Filtering

1. Ostu
Core function: skimage.filters.threshold otsu(image, nbins=256)

skimage 10, filters,color,transform

matplotlib.pyplot as pl
img = transform.rescale(color.rgb2gray(io.imread(

thresh = filters.threshold otsu(img

img bin =(img > thresh)*

plt.imshow(img plt.cm.gray)

vlt.subplot(122)

plt.imshow(img bin,plt.cm.gray)

plt.show()

A€ +0= 0

Also try
skimage.filters.threshold_adaptive(image, block_size, method='gaussian') that returns a binary
image with local thresholding.

2. Global thresh
Algorithm:
(1) Compute the global mean -> M
(2) Threshold the image with M -> Iu, Id; Compute the mean of Iu, and 1d -> Mu, Md
(3) Repeatuntil Mu+Md)/2=M
- Update M as (Mu +Md) /2
- Threshold the image with M -> Iu, Id, compute the mean of Iu, and Id -> Mu, Md

(4) Return M

mage 10 filters,color

numpy as np

global thresh(img):

mean_pre, end = img.mean()
mean cur = (np.mean(img[img<mean pre]) + np.mean(img[img>mean pre])) /
(mean pre - mean cur) > end:
mean pre = mean cur
mean_cur = (np.mean(img[img < mean pre]) + np.mean(img[img > mean pre])) /
mean cut

img = transform.rescale(color.rgb2gray(io.imread(

img bin =(img

¥ o o =

Binary image

€3 Hal=

skimage.filters.rank (http://scikit-image.org/docs/dev/api/skimage.filters.rank.html)

Some important filters examples
skimage.morphology disk
skimage.filters.rank as sft
g = color.rgb2gray(io.imread(
localmaxima = sfr.maximum(img, disk(3))
localminima = sfr.minimum(img, disk(3))

meanf = sfr.mean(img, disk(3))

medianf = sfr.median(img, disk(3))

http://scikit-image.org/docs/dev/api/skimage.filters.rank.html

histogram
skimage.exposure.histogram(image, nbins=256)

skimage

numpy as np

hist]=t stogram(img

t,

hist2=exposure.histogram(img

imgl=exposure.equalize hist(img) -- histogram equalization

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor="black’, edgecolor='black',alpha=1,
histtype="bar")
matplotlib.pyplot as plt
plt.figure()
arr=img.flatten()

n, bins, patches = plt.hist(arr

plt.show()

Image Morphology

1. Dilation and Erosion, there are various structural element we can use

skimage 10, color

A | +Q_'!= m mlll LT R

2. Opening and Closing

Opening is an erosion followed by a dilation
Closing is a dilation followed by an erosion
There are predefined functions for them.

img o = morph.opening(img,morph.diamond(3))

img ¢ = morph.closing(img,morph.star(3)

100

|#¢[+ o= B

3. Morphological gradient

Dilation and erosion are often used in combination to produce a desired image processing effect.
One simple combination is the morphological gradient.

(1) Dilation - Erosion (Basic gradient)

img gb = morph.dilation(img, morph.square(3)) - morph.erosion(img, morph.square(3))

p =]

200

0
a] -] 300] 500

n €3 Ha=| B

(2) Image — Erosion (internal gradient)

img gi = img - morph.erosion(img, morph.square(3))

200

=00

a 100 200 a w0 =M

@€ Ha=

(3) Dilation — Image (external gradient)
img ge = morph.dilation(img, morph.square(3)) - img

O_O

#€F+Q= B

Frequency Domain

1. Fourier Transform

The Fourier transform is a mathematical formula that relates a signal sampled in time or space to
the same signal sampled in frequency. In image processing, the Fourier transform can reveal
important characteristics of a signal, namely, its frequency components. Fourier Transform
depicts a signal (image) as sin and cos harmonic waves based on Euler’s formula (that relates the
sin and cos to complex numbers)

I I U
=
O
=
o
Q
o
1

o
5.
<
=
e
I
=}
w2
g
é.
=
<
=
<
=}
=
o
o
=
=
w2
|
g9
o
5
<
=
=N
aQ
o
=
=
=
=
[
Z
=}
(0]
=)
<
3
=
o
=}
=
5
o
<

Figure 1

Magnitude

Fourier and Convolution

As the Convolutional Theorem states that convolutions on the spatial domain is equivalent as
filtering on the frequency domain. We can perform fast convolution of large inputs by
multiplying two Fourier transforms between the kernel and the image.

A toy example

numpy as np|

(C2)
both output [[17 30 19] [30 45 30] [21 30 23]] which is the convolution of A with kernel B.

Discrete Cosine Transform (DCT)
A DCT expresses a finite sequence of data points in terms of a sum of cosine functions

oscillating at different frequencies. It is the cosine part of DFT and using only real numbers.
Core of JPEG

skimage 10, color

img dct = dct(dct(img.T)).T
recon = idct(idct(img dct.T)).T

2. Wavelet

Discrete wavelet transforms (DWT) analyzes signals and images into progressively finer octave
bands. As a time frequency information, wavelet multiresolution analysis enables the detection
of patterns that are not visible in the raw data. This is the core of JPEG2000

PyWavelet package using:

A, (H, V, D) = pywt.dwt2(img

¥ wpetat - o =

hLosa]
150
200

250

[+]

€2 +Q/= B/

For dbl or Haar transform, A is the down-sample, H is the horizontal, V vertical, D diagonal.

A simple 1D case can illustrate wavelet well:

image = [a,b,c,d] => L (Low frequency) = [(a+b)/2, (c+d)/2] = [A1, A2]
H (High frequency) = [b-a, d-c] = [D1, D2]
e.g.[1,2,3,4]=>A:[1.5,3.5] D:[1,1]
reconstruction: [a, b, ¢, d] =[A1 —DI1/2, A1 + D1/2, A2 -D2/2, A2 + D2/2]
a 2D Haar wavelet is to perform this to rows, then columns. And multi-level wavelet is to
continue doing thisin A ...

if we want to do the implementation for better understanding of wavelet, (generalized) lifting
scheme (https://en.wikipedia.org/wiki/Lifting_scheme) is preferred. Apart from the math, we can
understand the z-transform in lifting scheme as the position, i.e. z**0 is current position, z**-1 is
the previous neighbor, z**1 is the next neighbor, etc. Here I describe the process with less math
and an example, a useful link:
https://www.mathworks.com/help/wavelet/ug/lifting-method-for-constructing-wavelets.html

for a signal X(n):
(1) Split: Partition X(n) into polyphase, a usual step is lazy wavelet: into odd components O(n)
and even components E(n)

https://en.wikipedia.org/wiki/Lifting_scheme
https://www.mathworks.com/help/wavelet/ug/lifting-method-for-constructing-wavelets.html
https://www.mathworks.com/help/wavelet/ug/lifting-method-for-constructing-wavelets.html

(2) Dual lifting: also called prediction, predict the odd polyphase component based on a linear
combination of samples of the even polyphase component.
(3) Primal lifting: also called update, update the even polyphase component based on a linear
combination of difference samples obtained from the predict step.
Instead of using z-transform and matrix format, I redo the [1, 2, 3, 4] example (lifting for Haar)
here using only vectors:
(1) Split: O: [1, 3], E: [2, 4]
(2) Prediction: O_new = D = the prediction error=E — O =[1, 1]
(3) Update: E new=E - D=J1.5, 3.5]
The results are the same as the above, this is the magic behind the lifting schemes! In the
reconstruction,
E=E new+ 2 O _new = [2, 4]
O=E-0O new=1[1, 3]
Fully reconstructed. Understanding this example lead to direct implementations, often people
multiply the result O new and E new by sqrt(2) for normalizations, anyway, I write the
un-normalization version haar lifting here, they are quite simple and neat

my predict(O,E):

!
®)

my update(O.E):

12 * O

my iupdate(O,E):
E+1/2*

E-O

my ipredict(O,E):

Test it

numpy as np|
O, E = np.array([1, 3]), np.array([2, 4])

O new =my predict(O.E)

E new = my update(O new,E)

(O new.E new)

E r=my iupdate(O new.E new)

O r=my ipredict(O new.E r)

output:
[I1][1.5 3.5]

[1. 3.][2. 4]
That looks good.

	Installation
	Image Basic
	Type and color space
	Matplotlib
	Image Distortion
	Thresholding and Filtering
	Image Morphology
	Frequency Domain

