
AveyTense Project Change Log

This document provides changeovers in the AveyTense project written in Python. About
unknown or unseen on a large scale declarations please contact me either via email or
Discord (aveyzan).

Declarations aren't tested under angle of optimization, rather of predicted results
during compilation. For code changes, you can also ask me on the aforementioned
ways to contact.

This document will show only versions, which were uploaded to PyPi since 6th August
2024, those are versions 0.3.26rc1 and above. Older versions may no longer be
maintained as archives (to 0.3.24) due to improvements in code.

Versions, which have their upload date wrapped in circled brackets, but do not have an
identifier, like: PyPi/Zip, PyPi or Zip, then this is the upload date to PyPi.

Documentation website is account-free and doesn’t have any malicious code to inspect
the website’s viewers. The website is made to document AveyTense and its definitions,
and for nothing bad. It even was verified in 2 different domains and both confirmed the
website is safe to browse.

AveyTense Project License: MIT
© 2024-Present Aveyzan. All rights reserved.
Document maintained since 7th December 2024.

Versions and Changeovers
This section provides all existent versions since version 0.3.26rc1, and what changed
after their release dates. * indicates versions that haven’t been published yet; their
upload date may vary too.

https://pypi.org/project/AveyTense
mailto:aveyzan@gmail.com

Version 0.3.60* (30th Nov 2025)

Version 0.3.59 (12th Nov 2025)
●​ Fixed method aveytense.Tense.isMemoryView() (invalid key type in for loop

and corrected type hinting)
●​ Added class method aveytense.Tense.isType().
●​ aveytense.extensions: Added file type aliases extracted from stub module

_typeshed, type alias for special generic aliases in library typing, and callable
type alias EvaluateFunc from _typeshed.

Version 0.3.58 (30th Oct 2025)
●​ Added optional parameter ituFormat to constructor of aveytense.Color class to

allow support for ITU T.416 Information technology
●​ New definitions:

○​ aveytense.Color.mix() (static method)
○​ aveytense.Tense.tryOrPass() (class method)
○​ aveytense.Tense.tryOrReturn() (class method)
○​ aveytense.Tense.getAttr() (class method)

Version 0.3.57 (18th Oct 2025)
●​ Import optimizations for Python 3.14 (initiated since its upload date). To evade

deprecation warning regarding collections.abc.ByteString (meant to be
removed on 3.14, it was postponed to 3.17), this type alias has been re-declared

●​ Removed gimmick with Ellipsis and None in all sequence type checking class
methods in class aveytense.Tense from 0.3.53. Instead consider using
aveytense.extensions.NoneType and aveytense.extensions.EllipsisType

●​ DENOMINATION: aveytense.types → aveytense.extensions (refer to
typing_extensions module on PyPi)

●​ aveytense.constants: Added unsigned and normal minimal and maximal integer
values of the form borrowed from C: [U]INT<bits>_(MIN|MAX). Bits values: 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192. Restored JavaScript constants in
older form before 0.3.53, and retracted them from aveytense.Math.
JS_MIN_VALUE, however, received a little change - it now returns an instance of
decimal.Decimal instead of float.

●​ aveytense.util: Added 2 missing properties for CodeFlags variable and
Flags.code attribute: method and hasDocString. These only exist since Python
3.14

●​ Renamed following definitions:
○​ Module aveytense.extensions

■​ IOReader → Reader
■​ IOWriter → Writer

Version 0.3.56 (6th Oct 2025)
●​ Correctly backported ABCs from the typing library: IO, TextIO and BinaryIO, in

module aveytense.types before Python 3.9 (while typing_extensions has these
since 4.7.0 - meaning these exist for Python 3.7 and later). Adjusted imports to
support Python 3.6 and 3.7 in the future

●​ Performance tests on aveytense.RGB.__int__() and aveytense.RGB.__hex__()
methods. In the case of the first one it is advised to use int(<object of class
aveytense.RGB>) for the fastest execution time (rather than what can be found
in the internal code of __int__() method). In case of the __hex__() method, it
should be used over the hex final property (although their execution times are
very similar) and hex(int(<object of class aveytense.RGB>)).

Version 0.3.55 (24th Sep 2025)
●​ Projected versions 0.3.55b2 (24th Sep) and 0.3.55rc1 (27th Sep) have been

cancelled from uploading, and 0.3.55 (originally planned for 30th Sep) have been
uploaded in emergency mode, because the owner of AveyTense is about to
service their computer. That means next versions are likely to be postponed.
Version 0.3.55 will be probably the last version uploaded to PyPi this month.

●​ Removed all class methods and attributes in aveytense.Tense class equal to
itertools library equivalents; instead import aveytense.types to access these,
including backported classes batched and pairwise.

Version 0.3.55b1 (21st Sep 2025)
●​ The internal class for aveytense.Tense.versionInfo and

aveytense.aveytenseVersion() is no longer inheritable
●​ Fixed aveytense.types.TypingGenericType to be a clean type alias of

typing._GenericAlias
●​ Added remaining quasi-generic (in AveyTense these are called secondary) types

from builtins module (aveytense.types; in brackets amount of type
parameters):

○​ AVT_Filter (1)
○​ AVT_Map (1)
○​ AVT_Reversed (1)
○​ AVT_Slice (3)

●​ Added new class method aveytense.Tense.splitGeneric()

Version 0.3.55a2 (18th Sep 2025)
●​ Removed type alias in class aveytense.types.strict: AVT_Tuple (argument:

supports variable amount of type arguments, if no ellipsis given)
●​ Revoked the strict class in aveytense.types submodule due to incorrect type

hinting
●​ Class method aveytense.Tense.extend() received support for asynchronous

generators and mere generators
●​ Added support for enumerate objects in class method

aveytense.Tense.getGeneric(), including the AVT_Enumerate type alias in
submodule aveytense.types

●​ New generic types in aveytense.types submodule (in brackets amount of type
parameters):

○​ AVT_Accumulate (1)
○​ AVT_Batched (1)
○​ AVT_Chain (1)
○​ AVT_Combinations (1)
○​ AVT_CombinationsReplacement (1)
○​ AVT_Compress (1)
○​ AVT_Count (1)
○​ AVT_Cycle (1)
○​ AVT_DropWhile (1)
○​ AVT_FilterFalse (1)
○​ AVT_GroupBy (2)
○​ AVT_Islice (1)
○​ AVT_Pairwise (1)
○​ AVT_Permutations (1)
○​ AVT_Product (1)
○​ AVT_Repeat (1)
○​ AVT_StarMap (1)
○​ AVT_TakeWhile (1)
○​ AVT_Zip (1)
○​ AVT_ZipLongest (1)

●​ Replaced TypeError catching statement with Exception catching statement in
class method aveytense.Tense.probability2()

●​ Added support for zip class objects in class method
aveytense.Tense.getGeneric()

Version 0.3.55a1 (15th Sep 2025)
●​ Patched issue in aveytense.Tense.shuffle() (lack of statement for objects of

classes extending ABC collections.abc.Sequence)
●​ Missed in aveytense.Tense.fib(): the n parameter is now optional
●​ Every type with the AVT_ prefix are now completely generic; consider using their

__origin__ property to retrieve their origin; for type checking consider using
equivalents without the AVT_ prefix

●​ Added AVT_ prefixed types AVT_UnionType and AVT_GenericAlias to backport
types.GenericAlias and types.UnionType before - respectively - Python 3.9 and
3.10 (none of these are generic though). Submodule aveytense.types

●​ Added a little more strict versions of AVT_ prefixed types (inside class strict in
submodule aveytense.types). These types, however, may be incorrectly type
hinted

●​ Slowly starting to support Python 3.15
●​ Class method aveytense.Tense.append() received support for asynchronous

generators and mere generators. Next version the same feature
aveytense.Tense.extend() will have

●​ Class method aveytense.Tense.toList() now supports asynchronous iterable
objects

Version 0.3.54 (12th Sep 2025)
●​ Created minimally defined AVT_ prefixed generic type aliases for memoryview and

array.array classes in submodule aveytense.types - AVT_Array and
AVT_MemoryView. These are returned from the aveytense.Tense.getGeneric()
class method, respectively: before Python 3.12 and 3.14. This allows the use of
memoryview and array.array class instances to the
aveytense.Tense.getGeneric() class method. Preparing every declaration to be
ready for Python 3.14, this will be done for version 0.3.57.

●​ Class method aveytense.Math.fib() now returns a generator instead of an
integer.

●​ Re-created os.PathLike generic ABC for Python 3.8 as AVT_PathLike
●​ First commands: aveytense-upgrade to upgrade the AveyTense project (alias to

command pip install --upgrade aveytense) and aveytense-version to view
the current AveyTense version

●​ aveytense.Tense.random(): Added support for mappings (no overlap with
aveytense.Tense.pick() found)

●​ Added version info class aveytense.types.TypingExtensionsVersionInfo for
checking version of typing_extensions

Version 0.3.53 (30th Aug 2025) - Restructure Typing For
Older Python Versions

●​ None and Ellipsis can be passed to sequence type checking class methods in
class ~ .Tense; means wrapping both in type class constructor is no longer
required. However, there may be malfunctions when it comes to type hinting, this
behavior may change in the future. If correct type hint is top-priority, consider
using ~.types.NoneType or ~.types.EllipsisType classes instead

●​ Added unrealized concept from 0.3.41: the decorator @aveytense.util.all
●​ Added type alias aveytense.types.CoroutineWrapperType, and imported class

SimpleNamespace from Python library types
●​ Fought errors occurring between Python versions 3.8 and 3.11; many errors were

about subscripting with non-subscriptable types; replaced with their equivalents
with the AVT_ prefix. Patched errors when verifying backward-compatibility:

○​ aveytense.types.TypingConcatenateType: received TypeError for Python
3.10 and least. Replace last type argument from ellipsis to instance of
typing.ParamSpec to support Python versions before 3.11

○​ aveytense.types.Hashxof: _hashlib.HASHXOF was not defined before

Python 3.9. Receive type from invocation of function hashlib.shake_128()
before Python 3.9

○​ aveytense.types.EllipsisType: reference to undefined class
EllipsisType before Python 3.10. Receive type of Ellipsis before 3.10
and retain import of Python types.EllipsisType since 3.10

○​ aveytense.Tense.getGeneric(): invalid syntax in typing.Union[*v]
before Python 3.11. Replace with eval() result instead

○​ Internal definitions in submodule aveytense.util for class ParamVar: use
of PEP 616 string methods str.removesuffix() and str.removeprefix();
before Python 3.9 they weren't defined. Re-implement these for Python 3.8

○​ Definitions in class aveytense.Tense: reference to types.UnionType before
Python 3.10 and lack of statement, what made union types tuple internal
variable unbound. Fix by restructuring the statements

○​ Final properties in class aveytense.util.ParamVar for annotations and
one for function signature: the globals parameter in function eval() was
normally passed by keyword. Use position instead of keyword for
parameter globals for versions before Python 3.13

●​ Asynchronous abstract base classes and classes for mapping views can now be
normally returned from ~.Tense.getGeneric() class method instead of None.
Footnote: I have been struggling with finding a solution, especially retrieving a
mere generator from an asynchronous iterable object, but it was worth it!

●​ When generator or asynchronous generator is passed to ~.Tense.reverse() and
~.Tense.shuffle() class method, their modified copy is returned

●​ Class methods of class ~.Tense that have the condition parameter no longer
force its value being lambda expressions (one-parameter callable object instead)

●​ Added abstract base classes from module contextlib (AsyncContextManager
and ContextManager) as well as provided their subscripted versions with the AVT_
prefix (AVT_AsyncContextManager and AVT_ContextManager) in submodule
~.types

●​ Class method ~.Tense.generator() no longer uses generator expression to
return the generator; now code also overrides the __qualname__ attribute so that
the string returned from generator object won’t have more complex notation as
<generator object Tense.generator.<locals>._gen_ at 0x000001E6396BE4D0>

●​ Added new class methods
○​ ~.Tense.removeSuffix()

○​ ~.Tense.removePrefix()
○​ ~.Tense.getFlags()
○​ ~.Tense.asyncGenerator()
○​ ~.Tense.isAsyncGenerator()

●​ Name changes
○​ ~.constants.JS_MIN_VALUE → ~.Math.JS_MIN_VALUE
○​ ~.constants.JS_MAX_VALUE → ~.Math.JS_MAX_VALUE
○​ ~.constants.JS_MIN_SAFE_INTEGER → ~.Math.JS_MIN_SAFE_INTEGER
○​ ~.constants.JS_MAX_SAFE_INTEGER → ~.Math.JS_MAX_INTEGER
○​ ~.Tense.startswith() → ~.Tense.startsWith()
○​ ~.Tense.endswith() → ~.Tense.endsWith()

Version 0.3.52 (18th Aug 2025) - Restructure Typing
●​ Type annotations from ~.util.ParamVar that use the __annotations__ function

attribute are now officially un-stringized. Parameters from final properties that
return annotated parameters which weren’t sorted as they appear in the
function’s signature are now in correct order.

●​ Final property ~.util.ParamVar.keywordWithDefaults now returns tuple instead
of None (there was return statement missing)

●​ Renamed submodule ~.types_collection to types. This will be probably last
module denomination since removed submodule ~.tcs

●​ Added type alias ~ .AbroadType and class ~ .types.GenExprType to use with
isinstance() inbuilt function. The same change occurred on type alias ~
.types.LambdaType that is no longer the same type as Pythonic
types.LambdaType. New types that are prefixed by AVT_ are meant to warrant
type subscription backward-compatibility for Python 3.8, and should be only
used for type hinting. For type checking, consider using classes/types not
prefixed by AVT_. List of all type aliases with the AVT_ prefix featured in this
AveyTense version:

○​ Inbuilt classes
■​ ~.types.AVT_Dict
■​ ~.types.AVT_FrozenSet

■​ ~.types.AVT_List

■​ ~.types.AVT_Set

■​ ~.types.AVT_Tuple

■​ ~.types.AVT_Type

○​ Classes from Python module collections
■​ ~.types.AVT_ChainMap

■​ ~.types.AVT_Counter

■​ ~.types.AVT_DefaultDict

■​ ~.types.AVT_Deque

■​ ~.types.AVT_OrderedDict

○​ Abstract base classes from Python module collections.abc
■​ ~.types.AVT_AsyncGenerator

■​ ~.types.AVT_AsyncIterable

■​ ~.types.AVT_AsyncIterator

■​ ~.types.AVT_Awaitable

■​ ~.types.AVT_Callable

■​ ~.types.AVT_Collection

■​ ~.types.AVT_Container

■​ ~.types.AVT_Coroutine

■​ ~.types.AVT_Generator

■​ ~.types.AVT_ItemsView

■​ ~.types.AVT_Iterable

■​ ~.types.AVT_Iterator

■​ ~.types.AVT_KeysView

■​ ~.types.AVT_Mapping

■​ ~.types.AVT_MappingView

■​ ~.types.AVT_MutableMapping

■​ ~.types.AVT_MutableSequence

■​ ~.types.AVT_MutableUniqual (refer to MutableSet)
■​ ~.types.AVT_Reversible

■​ ~.types.AVT_Sequence

■​ ~.types.AVT_Uniqual (refer to AbstractSet)
■​ ~.types.AVT_ValuesView

○​ Classes from Python module re

■​ ~.types.AVT_Match

■​ ~.types.AVT_Pattern

●​ Removed decorator ~.util.ClassLike and its alias ~.util.classlike
●​ Mended type aliases ~.types.Hash and ~.types.Hashxof; instead of using the

type class constructor to denote these types from functions hashlib.sha1() and
hashlib.shake_128(), code was revamped to import classes HASH and HASHXOF
from module _hashlib

●​ Added new type aliases
○​ ~.types.AnyMeta
○​ ~.types.ProtocolMeta
○​ ~.types.TypedDictMeta
○​ ~.types.TypingGenericType

○​ ~.types.TypingConcatenateType

○​ ~.types.TypingAnnotatedType

○​ ~.types.TypingCallableType

○​ ~.types.TypingUnpackType

○​ ~.types.TypingUnionType

○​ ~.types.TypingLiteralType

○​ ~.types.TypeForm (typing_extensions >= 4.13.0 exclusive, may occur on
Python 3.14 in typing module)

●​ Added new class methods
○​ ~.Tense.extract()
○​ ~.Tense.getGeneric()

○​ ~.Tense.isLambda()

○​ ~.Tense.isIterable()

○​ ~.Tense.isIterator()
○​ ~.Tense.isGenerator()
○​ ~.Tense.isGenExpr()

○​ ~.Tense.isAwaitable()

○​ ~.Tense.isCoroutine()

Version 0.3.51 (3rd Aug 2025) - More Figurate Number
Functions!

●​ Added initial support for types (with static method
~.util.ParamVar.fromType()) and built-in functions in class ~.util.ParamVar.
Not all built-in functions and methods can be introspected efficiently though.
Added final properties with suffix -withDefaults

●​ Big change in class ~.Math. Added following class methods (noteworthy: if n was
equal 0, then 0 in all of these will be returned):

○​ ~.Math.triangularCentered()

○​ ~.Math.square()

○​ ~.Math.squareCentered()

○​ ~.Math.pentagonalCentered()

○​ ~.Math.hexagonalCentered()

○​ ~.Math.heptagonalCentered()

○​ ~.Math.octagonalCentered()

○​ ~.Math.nonagonalCentered()

○​ ~.Math.decagonalCentered()

○​ ~.Math.hendecagonal()

○​ ~.Math.hendecagonalCentered()

○​ ~.Math.dodecagonal()

○​ ~.Math.dodecagonalCentered()

○​ ~.Math.tridecagonal()

○​ ~.Math.tridecagonalCentered()

○​ ~.Math.star()

○​ ~.Math.pyramidal()
○​ ~.Math.polygonalCentered()

○​ ~.Math.pentatope()

○​ ~.Math.tetrahedral()

○​ ~.Math.tetrahedralCentered()

○​ ~.Math.cube()

○​ ~.Math.cubeCentered()

○​ ~.Math.octahedral()

○​ ~.Math.octahedralCentered()

○​ ~.Math.dodecahedral()

https://aveyzan.xyz/aveytense#aveytense.util.ParamVar

○​ ~.Math.dodecahedralCentered()

○​ ~.Math.icosahedral()

○​ ~.Math.icosahedralCentered()

○​ ~.Math.pronic()

○​ ~.Math.stellaOctangula()
●​ Fixed indexes for ~.Math.fib() class method, and the same class method

received support for zero value
●​ In class ~.Tense added new class method ~.Tense.getAllItemsTypes()

Version 0.3.50 (12th July 2025)
●​ Classes ~.util.uniquelist and ~ .util.uniquetuple now have ellipsis as the

default value to comply with constructors of inbuilt classes list and tuple.
Ellipsis as the parameter value returns, respectively, empty list and empty tuple.

●​ Corrected final properties in class ~.util.ParamVar to support instance methods
passed via class reference (those are de facto functions).

●​ Corrected traceback entries
●​ Migrated page from https://aveyzan.glitch.me/ to https://aveyzan.xyz/ due to

announcement from Glitch concerning project hosting from 8th July. That means
the AveyTense documentation is under new link https://aveyzan.xyz/aveytense/

●​ Added class method ~.Tense.isAbroad() to inspect abroad objects

Version 0.3.49 (3rd July 2025)
●​ Added class method ~.Tense.flatten()
●​ Removed following methods (meant to be removed in version 0.3.48):

○​ ~.RGB.__pos__() (deprecated since 0.3.41)
○​ ~.RGB.__neg__() (deprecated since 0.3.41)
○​ ~.RGB.__invert__() (deprecated since 0.3.41)

Version 0.3.48 (24th June 2025)
●​ Reduced distribution size by almost 2 kilobytes
●​ Fixed ~.util.ParamVar.signature final property in case of type annotations. In

the previous version, annotations were included only in parameters with default
value (excluding variable argument and variable keyword argument). Added
return type annotation to the returned signature

●​ Removed following methods:
○​ ~.Tense.upgrade() (deprecated since 0.3.46)

https://aveyzan.xyz/aveytense#aveytense.util.uniquelist
https://aveyzan.xyz/aveytense#aveytense.util.uniquetuple
https://aveyzan.glitch.me/
https://aveyzan.xyz/
https://aveyzan.xyz/aveytense/
https://aveyzan.xyz/aveytense/glossary#abroad_objects

○​ ~.Color.__pos__() (deprecated since 0.3.47)
○​ ~.Color.__neg__() (deprecated since 0.3.47)
○​ ~.Color.__invert__() (deprecated since 0.3.47)

●​ Removed following classes:
○​ ~.types_collection.String (deprecated since 0.3.41)
○​ ~.types_collection.Integer (deprecated since 0.3.41)
○​ ~.types_collection.Float (deprecated since 0.3.41)
○​ ~.types_collection.Complex (deprecated since 0.3.41)
○​ ~.types_collection.Boolean (deprecated since 0.3.41)
○​ ~.types_collection.UnicodeRepresentable (deprecated since 0.3.41)
○​ ~.protogen (deprecated since 0.3.47)

●​ Added class ~.util.uniquelist to return a version of an iterable without
duplicate items and changing their order as a list, and ~.util.uniquetuple class
being the same class as ~.util.uniquelist, however, a tuple is returned instead

Version 0.3.47 (12th June 2025) - Pre-PEP 570 Positional
Parameters Support & Traceback Shortening

●​ Revamped final properties in class ~.util.ParamVar to support doubly
underlined parameters before PEP 570. Before Python 3.8 (version when PEP 570
document was affirmed), to create positional-only parameters, it was required to
put 2 underlines before the parameter names

●​ Revamped final property ~.util.ParamVar.annotations to return parameters as
they appear in the function’s signature and their types, plus function’s return
type behind the key “return”

●​ Final property ~.util.ParamVar.annotated no longer include the “return” item
in returned string tuple; instead check it via
dict(~.util.ParamVar.annotations).get(“return”) statement

●​ 2nd item from tuple returned from ~.util.ParamVar.annotatedDefaults final
property is now another 2-item tuple with content: annotated type and default
value (earlier it was only a default value)

●​ ~.util.ParamVar.signature final property now displays type annotations in
parameters where they were used

●​ All constants with prefix MATH_ in submodule ~.constants have been moved to
class ~.Math, and lost the MATH_ prefix in their names

●​ Changed traceback (reduced entries to 1)
●​ Up to be removed in version 0.3.48, since now deprecated:

○​ class ~.protogen
○​ ~.Color.__pos__()

https://peps.python.org/pep-0570/

○​ ~.Color.__neg__()

○​ ~.Color.__invert__()
●​ Removed submodule ~.games (will be used for separate project

aveytense_games; for now consider manually asking to send this missing file if
some declarations from it are needed)

●​ Removed constant ~.constants.SMASH_HIT_CHECKPOINTS

Version 0.3.46 (30th May 2025) - Probability Decade &
Backporting to Python 3.8

●​ Backported the project to Python 3.8, so support for Python 3.8 is now
warranted! If there are errors in Python versions preceding the present one
(3.13), consider contacting me! Support for Python 3.8 is just initialized, and may
require further inspection. During installation process, PyPi project’s
typing_extensions version 4.10.0 or greater is now required

●​ Class method ~.Tense.probability2() no longer requires same-type arguments,
types can vary now. Removed restriction of sys.maxsize

●​ Added class method ~.Tense.probability3(), which is circa 3 times faster than
~.Tense.probability() class method

●​ Class methods ~.Tense.append(), ~.Tense.extend() and ~.Tense.exclude()
now accept mappings (in this case added overloads)

●​ Re-implemented class method ~.Tense.probability(); shortened its code and
removed restriction of sys.maxsize

●​ ~.Tense.probability() now supports a wider gamut of types. Except lists,
tuples, sets, deques, frozensets, dictionaries, their ABCs equivalents (Sequence,
AbstractSet and Mapping) are now supported (deques themselves inherit
MutableSequence ABC, which extends Sequence ABC; refer to inbuilt submodule
collections.abc). Returned type is no longer required to be an integer

●​ Removed option ~.TenseOptions.disableProbability2LengthLimit due to
change in class methods ~.Tense.probability() and ~.Tense.probability2()

●​ ~.Tense.pick() class method no longer has overloads. Not really colossal
meaning since it concerned the mapping signature overload (type parameter for
key wasn’t used, and has been replaced to typing.Any). Sequences and sets are
now coerced to list so that the picked element may be returned without throwing
unnecessary errors

●​ Mended ~.Math.exsec() and ~.Math.excosec() class methods (error thrown
when sine or cosine wasn’t equal 0)

●​ Patch (may be final) in final properties in ~.util.ParamVar responsible to
retrieve variable arguments (and signature is now displayed correctly)

●​ Class method ~.Tense.upgrade() is now deprecated (will be removed on 0.3.48)

●​ Added class methods:
○​ ~.Tense.invert()
○​ ~.Math.fma() (alias to fused multiply-add operation)
○​ ~.Math.coth()

○​ ~.Math.sech()

○​ ~.Math.cosech()

○​ ~.Math.acot()

○​ ~.Math.acoth()

○​ ~.Math.asech()

○​ ~.Math.acosech()

Version 0.3.45 (16th May 2025)
●​ Revamped class methods ~.Tense.reverse() and ~.Tense.shuffle(): after

conclusion, sets cannot be reversed nor shuffled, sets passed to both methods
now return a list. Every time, returned set was sorted ascendingly, despite its
documentation said “unordered collection of unique elements”

●​ Appended feature for ~.Tense.expect(), which was meant to be provided in
version 0.3.48: parameter m may now also be a set, range and abroad (from
abroad() function) objects.

●​ ~.util.MutableString class constructor now accepts instances of itself, same
class received instance methods: join() and reverse().

●​ Static method ~.RGB.fromValue() now supports shortened CSS syntax for hex
colors (applies to strings only)

●​ Fixed final properties ~.util.ParamVar.variable and ~.util.ParamVar.all

Version 0.3.44 (3rd May 2025)
●​ Re-implemented final property ~.util.ParamVar.signature; it no longer uses

any inbuilt module in its code
●​ Revamped method ~.util.ParamVar.__str__() - it now also returns count of

annotated parameters
●​ Variable argument and variable keyword argument are now correctly assembled

in final property ~.util.ParamVar.all
●​ Submodule ~ .extensions is now public (renamed from ~._extensions)
●​ Added new final properties in class ~.util.ParamVar:

○​ ~.util.ParamVar.positionalNoDefaults

○​ ~.util.ParamVar.universalNoDefaults

○​ ~.util.ParamVar.keywordNoDefaults

○​ ~.util.ParamVar.annotatedDefaults

○​ ~.util.ParamVar.annotatedNoDefaults

○​ ~.util.ParamVar.positionalCount

○​ ~.util.ParamVar.positionalDefaultsCount

○​ ~.util.ParamVar.positionalNoDefaultsCount

○​ ~.util.ParamVar.universalCount

○​ ~.util.ParamVar.universalDefaultsCount

○​ ~.util.ParamVar.universalNoDefaultsCount

○​ ~.util.ParamVar.keywordCount

○​ ~.util.ParamVar.keywordDefaultsCount

○​ ~.util.ParamVar.keywordNoDefaultsCount

○​ ~.util.ParamVar.annotatedCount

○​ ~.util.ParamVar.annotatedDefaultsCount

○​ ~.util.ParamVar.annotatedNoDefaultsCount

○​ ~.util.ParamVar.allCount

○​ ~.util.ParamVar.allDefaultsCount

○​ ~.util.ParamVar.allNoDefaultsCount

○​ ~.util.ParamVar.variableCount

Version 0.3.43 (18th Apr 2025)
●​ Added class method ~.Tense.isTuple2() being extension of inbuilt function

isinstance() and ~.Tense.isTuple()
●​ Added class decorator ~.util.finalpropertycontainer
●​ Fixed class decorator ~.util.finalproperty, and

~.util.MutableString.__str__() (earlier, it was returning a string list)
●​ Patch in ~.util.ParamVar.universal final property (one item too much, and that

item wasn’t in the universal category, but positional)
●​ Added decorator ~.util.classproperty for backward-compatibility before

Python 3.13

Version 0.3.42 (2nd Apr 2025)
●​ Class methods ~.Tense.reverse() and ~.Tense.shuffle() provided support for

generators; ~.Tense.reverse() also received support for classes extending ABC
collections.abc.Reversible

●​ Due to change in class ~.util.finalproperty, class method
~.Tense.isFinalProperty() has been updated. In this case it is now impossible
to return True if there is no concrete parent class of the member. It is now
mandatory to wrap both class and its member name as a string into a 2-item
tuple. Behavior for globally accessible final properties is kept.

●​ Removed submodule aveytense.fencord
●​ Caught anomaly in static method ~ .RGB.fromValue() - strings weren’t implicitly

converted to RGB tuple correctly. It is discouraged to provide less than 6

hexadecimal characters in a string, and sooner or later this technique will be
excised

●​ Removed constants ~.constants.MC_ENCHANTS and ~.constants.MC_DURABILITY
(replacing it with ~.games.Minecraft.durability final property; first one now
occurs as final property ~.games.Minecraft.enchantments)

●​ Added new classes:
○​ ~.util.ParamVar
○​ ~.util.MutableString (do not misinterpret it as an abstract base class)

●​ Added following class methods:
○​ ~.Tense.startswith()
○​ ~.Tense.endswith()

○​ ~.Tense.test()

Version 0.3.41 (14th Mar 2025)
Happy irrational constant π day!

●​ It is no longer permitted to pass ANSI escape code to text in constructor of class
~.Color

●​ Regulated checking type in constructor of class ~.Color and
~.Tense.probability() to comply with older Python versions before 3.10

●​ More proper representations of several class objects scattered around the
project

●​ Removed submodule aveytense.databases
●​ Added new classes:

○​ ~.Colors and its alias ~.Colours
○​ ~.games.Minesweeper

○​ ~.games.Sudoku

○​ ~.games.Minecraft

○​ ~.games.Cards

○​ ~.games.TicTacToe
●​ Changed following methods:

○​ ~.games.Games.emptyField() → ~.games.TicTacToe.EMPTY (no longer
class method, it is a constant now)

○​ ~.games.Games.ttBoardDisplay() → ~.games.TicTacToe.displayBoard()
(no longer class method)

○​ ~.games.Games.ttBoardGenerate() → ~.games.TicTacToe.clear() (no
longer class method; returns self instead of new duo-dimensional string
list)

○​ ~.games.Games.ttBoardLocationSet() → ~.games.TicTacToe.set() (no
longer class method)

○​ ~.games.Games.ttBoardSyntax() → ~.games.TicTacToe.syntax() (no
longer class method)

○​ ~.games.Games.ttChangeChars() → ~.games.TicTacToe.__init__() (no
longer class method)

○​ ~.games.Games.ttLineMatch() → ~.games.TicTacToe.match() (no longer
class method)

○​ ~.games.Games.ttNextPlayer() → ~.games.TicTacToe.nextPlayer() (no
longer class method)

○​ ~.games.Games.ttIndexCheck() → ~.games.TicTacToe.check() (no longer
class method)

○​ ~.games.Games.ttFirstPlayer() → ~.games.TicTacToe.__init__() (no
longer class method)

○​ ~.Tense.upgrade() now allows to properly upgrade the pip module,
thanks to this project

○​ ~.Tense.print() lost invokedAs parameter, instead received reprFirst
parameter, which allows to invoke repr() function first before str()

○​ ~.Tense.isDecimal() → ~.Tense.isDecimal2()
○​ ~.games.Games.mcEnchBook() → ~.games.Minecraft.enchBook()

●​ Added following class methods:
○​ ~.Math.diagonals()

○​ ~.Math.fib()

○​ ~.Math.stdev()

○​ ~.Math.toRadians()

○​ ~.Math.toDegrees()

○​ ~.Math.toGradians()

○​ ~.Math.isFraction()

○​ ~.Math.isDecimal()

○​ ~.Math.isNumber()

○​ ~.Tense.isSlice()

○​ ~.Tense.isProperty()

○​ ~.Tense.isFinalProperty()

○​ ~.Tense.isFinalClass()

○​ ~.Tense.equal()

○​ ~.Tense.inequal()

Version 0.3.40 (27th Feb 2025)
●​ In the document, symbol ~ will be now referred to as the main module. Moreover,

the main module has been renamed from tense to aveytense; please switch to

https://github.com/pypa/get-pip

this name! This change has to prevent importing conflict with PyPi library called
tense

●​ More imports from typing_extensions module than from typing module to
comply with changes occurred before (like TypeVarTuple before Python 3.13 is
imported via typing_extensions, not via typing module)

●​ Added support for types.GenericAlias before Python 3.9 (unconfirmed yet since
AveyTense project is normally available since Python 3.9), project support since
Python 3.8 will be rethought

●​ Fixed ~.Tense.isNone(). Earlier, it meant errors for class methods which use this
method.

●​ ~.Tense.any() and ~.Tense.all() now hold default value ellipsis in parameter
condition, support for None has been removed, use ellipsis instead for default
value

●​ Patch in methods ~.Math.perm() (returned result is now correct), ~.Math.gcd()
and ~.Math.lcm() (both allowed only negative integers thanks to missing not
keyword)

●​ Updated string representation for ~.constants.VERSION_INFO and when
initializing class ~.Tense

●​ Removed setting ~.TenseOptions.initializationMessage and class
~.FencordOptions

●​ Added missing modes in method ~.Tense.group()
●​ Added following class methods:

○​ Tense.expect()
○​ Math.mean()

Version 0.3.39 (14th Feb 2025)
Happy Valentine’s Day! Apparently it turns out that this day is the 45th day of the year,
and the upload date of this version refers to number 45, which, squared, returns the
year of upload date of this version. Many updates have occurred so far!

●​ Finished numeric string checking on tense.RGB.fromValue() static method
●​ Submodule tense.fencord may be no longer continued and may be removed -

contact Aveyzan to access the submodule in case it was no longer available
●​ Constants from tense.constants are no longer wildcard-imported via tense

module, instead added aliased import via new variable tense.Tense.constants
●​ All class methods in class tense.Math now have type checking (and

trigonometric functions received domain checking)
●​ Class method tense.Tense.upgrade() received optional parameter aveytense,

which allows to upgrade AveyTense project only or not; defaults to True
●​ Updated tense.Math.abs() class method, see here for note

https://aveyzan.glitch.me/tense#tense.Math.abs

●​ Class method tense.Math.isInRange() received a mode parameter to control
intervals (4 modes are possible: closed, closed-open, open-closed and open,
aliased, respectively, to: c, co, oc and o; case is insensitive)

●​ tense.Math.lcm() and tense.Math.gcd() class methods received support before
Python 3.9

●​ tense.Math.log() class method now has parameter x as positional-only
●​ Added following class methods:

○​ Math.lwdp() (alias to least with digit product)
○​ Math.maxDigit()
○​ Math.minDigit()
○​ Math.perm()
○​ Math.toDigits()

Version 0.3.38 (11th Feb 2025)
●​ Fixed constructor of tense.Color class for tense.RGB instances
●​ Added domain checking for class methods:

○​ Math.acosec()
○​ Math.asec()
○​ Math.asin()
○​ Math.acos()

●​ Finished class tense.RGBA
●​ Corrected checking numeric strings for static method tense.RGB.fromValue()

and tense.Color
●​ Added new class methods:

○​ Math.isIncreasing()

○​ Math.isDecreasing()
○​ Math.isMonotonous()
○​ Math.isNonIncreasing()
○​ Math.isNonDecreasing()
○​ Math.isConstant()
○​ Tense.isBinary()
○​ Tense.isOctal()
○​ Tense.isDecimal()
○​ Tense.isHexadecimal()
○​ Tense.isFinalVar()

Version 0.3.37 (9th Feb 2025)
●​ Removed all Tkinter declarations (in this case classes)
●​ Class method tense.Tense.clear() now accepts mutable mappings (such as

dictionaries) and instances of tense.Color

●​ Added type alias tense.Colour for tense.Color class
●​ Added experimental class tense.RGBA
●​ Fixed constructor of tense.Color class and static method

tense.RGB.fromValue()

Version 0.3.37a1 (3rd Feb 2025)
●​ Removed all Tkinter declarations (in this case classes), which were accessible via

submodule tense.types_collection
●​ added @tense.util.finalproperty class decorator to create final properties

accessible via class instance (warning: will not work with @staticmethod inbuilt
decorator; with @classmethod since Python 3.13 it is not possible). For final fields
consider using tense.util.FinalVar

Version 0.3.36 (2nd Feb 2025)
●​ Removed Tkinter imports (its declarations will be, forever, removed in further

version - 0.3.37a1)
●​ Removed tense.File class
●​ Added static method tense.RGB.fromValue()
●​ Added many values checking at once in the following class methods:

○​ Tense.isInt() / Tense.isInteger()
○​ Tense.isFloat()
○​ Tense.isComplex()
○​ Tense.isBool() / Tense.isBoolean()
○​ Tense.isStr() / Tense.isString()
○​ Tense.isNone()
○​ Tense.isEllipsis()

●​ Added initial support for generic types in the following class methods:

○​ Tense.isList()
○​ Tense.isTuple()
○​ Tense.isDict()
○​ Tense.isSet()
○​ Tense.isFrozenSet()

●​ Planning update on class method tense.Tense.probability(); it will concern

any-type support and many sequences/mappings support
●​ Added string constants and constants MODE_AND and MODE_OR
●​ Added class method tense.Math.isInRange()

Version 0.3.35 (23rd Jan 2025)
●​ Another patch in method Tense.probability() (disqualified ZeroDivisionError

when more than 2 values are passed, in modulo operation)
●​ Finished class FinalVar, and moved it to the tense.util submodule,

simultaneously removing it from the tense.types_collection submodule. Class
FinalVar may be also subclassed. Value getting concerns usage of + unary plus
sign and the x attribute (would explain class itself is a subclass of
typing.NamedTuple)

●​ Moved class ClassLike and its lowercase alias from tense.types_collection to
the tense.util submodule

●​ Removed option TenseOption.enableFurryDeclarations , and moved all
methods from class Tense related to this option (Tense.owoify() and its alias),
Tense.aeify() and Tense.oeify() have been moved to submodule tense.games
as global functions

●​ Added methods Tense.starmap(), Tense.isMemoryView(), Tense.isBytes(),
Tense.isByteArray(), Tense.isSet(), Tense.isFrozenSet(),

●​ Method Tense.abroadEach() may now return any-typed list, parameter each is
now keyword-only

●​ Methods checking sequences (list, tuple, set, frozenset, dict) now allow union
types, see updates in this page

●​ All constants from submodule tense.constants representing integer/float values
are now preceded with MATH_, to prevent importing conflicts especially with E
math constant

●​ In-code change: since Python 3.11 digit limit is disabled
●​ Added several enum members to submodule tense.constants
●​ Deprecated tense.constants.VERSION_ID and tense.constants.VERSION_LIST

Version 0.3.34 (15th Jan 2025)
Happy (Late) New Year 2025!!

●​ removed class NennaiStrings (might have been removed on 0.3.28)
●​ removed class NennaiAbroads due to incorporation with class Tense
●​ removed class NennaiRandomize; methods in the class before removal:

○​ randomize() (instead invoke Tense.pick() or Tense.random() with one
parameter)

○​ randomizeInt() (instead invoke Tense.random() with 2 integer
parameters)

○​ randomizeStr() (instead invoke new method Tense.randstr())
○​ randomizeStr2() (instead invoke Tense.shuffle())

https://aveyzan.glitch.me/tense#tense.Tense.isDict

○​ randomizeUuid() (instead invoke Tense.uuidRandom())
●​ class object returned from function abroad() now features shallow and deep

copy operations
●​ new submodule tense.util, moved special classes Abstract, Final and Frozen

there, along with their decorator equivalents and AbstractFinal, FinalFrozen
and AbstractFrozen

●​ added new methods: Tense.intersection(), Tense.union() (both are same as,
respectively, set.intersection() and set.union(), only difference is that first
sequence doesn’t have to be a set necessarily)

●​ due to fact that any mutable sequences passed to methods Tense.append() and
Tense.extend() are coerced to list, any iterables are now allowed in first
parameter

●​ added a new option TenseOption.enableFurryDeclarations (defaults to False),
which toggles on accessibility to methods Tense.owoify() and Tense.uwuify()
(when it is set to True)

●​ class Tense lost informational string conversion and support for unary +, unary -,
and ~ operators (out-of-date)

●​ code update; least internal imports
●​ method Tense.pick() received secure parameter
●​ first overloaded methods: Tense.bisect(), Tense.insort(), Tense.eval(),

Tense.intersection(), Tense.union(), Tense.difference(),

Tense.occurrences(), Tense.reverse(), Tense.shuffle(), Tense.all(),

Tense.any(), Tense.first(), Tense.last(), Tense.random(), Tense.pick()
●​ method Tense.isList() received an optional parameter type allowing to select

a list type as additional step before return of boolean value (e.g.
Tense.isList([“”], int) would return False, since it is a string list and we
await an integer list)

●​ method Tense.isTuple() received optional parameters type; use as
Tense.isTuple(v, type), second overload with parameter types is under
experiments (e.g. Tense.isTuple((87,), int) returns True, because passed is
integer tuple, and expected is integer-typed tuple), tests to be done presumably
on 0.3.36

●​ method Tense.isDict() received optional parameters ktype and vtype (both,
for providing demanded types for, respectively, key and value in a dictionary)

●​ method Tense.pick() now, after sequences, accepts mappings (second
overload)

●​ added method Tense.hasattr() being extension of inbuilt function hasattr()
(difference is many attribute checking at once via string tuple, and mode
selection - logical AND or OR)

●​ aspirations to add method Games.blackjack()

Version 0.3.33 (25th Dec 2024)
●​ amended setting TenseOptions.disableProbability2LengthLimit via code in

method Tense.probability2() (inner code issue fixed)
●​ edit in code Tense.probability()

Version 0.3.32 (16th Dec 2024)
●​ fixes on several ABCs from tense.types_collection: Sequence, MutableSequence,

Uniqual, MutableUniqual, Mapping, MutableMapping to correct type checking,
whichever is used in inspections (patched error with valid parameters actually
being instances of these classes)

●​ sequence returned from abroad() function (AbroadInitializer) received more
features: support for + operator (excluding unary notation, which is already
provided), for * operator, which will act the same as in case of lists, and for in
operator, allowing to check whether an item belongs to sequence, reversing
sequence

●​ Added property Tense.none (console-specific/IDLE-specific since it returns None)
●​ added new method Tense.occurrences() counting amount of times item(s)

appearing in a sequence, and Tense.difference() returning list of items of the
first sequence that don’t belong to the second sequence (can be also used vice
versa with parameter invert)

Version 0.3.31 (8th Dec 2024)
●​ class TenseTk is now deprecated and will be removed on 0.3.36, as well as Tkinter

variables from tense.types_collection submodule. Cause of that is receding
from Tkinter technology

●​ several methods in class Tense lost support for Tkinter variables, same as in
Games.mcEnchBook() method

●​ suspended tests on Frozen class (couldn't find solution which may be like code in
class enum.Enum)

●​ shortened code of Games.mcEnchBook() method
●​ moved class Games to new submodule tense.games
●​ added new option in class TenseOptions: disableProbability2LengthLimit,

which applies on Tense.probability2() to prevent using internal list to generate
result

●​ in method Tense.disassemble() added lacking parameter showOffsets
●​ method Tense.repeat() now factually returns an instance of itertools.repeat

class; parameter times may now also have value None (earlier it supported only
integers and default value of that parameter was 2, and now it is None)

●​ removed method Tense.error()
●​ added method Tense.isDict() for checking whether a value is a dictionary
●​ added math methods, all in class tense.Math: isPositive(), isNegative(),

isPrime(), isComposite(), lcm(), gcd()

Version 0.3.30 (29th Nov 2024)
Begin of tests on class Frozen from tense.types_collection.
This version was planned to be uploaded on 13th December 2024.

Version 0.3.29 (PyPi/Zip: 27th Nov 2024)
Fixed the Final class from submodule tense.types_collection and better efficiency of
class AbroadInitializer (now features item getting technique).
This version was planned to be uploaded on 3rd December 2024.

Version 0.3.28 (PyPi/Zip: 23rd Nov 2024)
●​ module typing_extensions is now required during installation of AveyTense via

PyPi, gimmick via inbuilt Python library subprocess will be still kept anyway
●​ added tense.RGB and tense.CMYK classes as helpline for tense.Color class
●​ removed static methods Final.method and Abstract.method, since they are

inherited by their subclasses, use finalmethod and abstractmethod functions
instead (submodule tense.types_collection)

●​ reorganization of type _AbroadInitializer - it is now a class and offers easier
cast to list, tuple and also set (respectively, unary operators: +, - and ~). To be
more explanatory: this type is returned from abroad() function

This version was uploaded on date as though (23rd November 2024).

Version 0.3.27 (PyPi: 22nd Nov 2024 / Zip: 11th Nov 2024)
●​ class Tense no longer extends NennaiStrings class (argument: it will only inherit

only a few useless methods), class itself is marked as deprecated
●​ constructor of class tense.Color no longer has parameter underlineColor

(argument: no changes made in the underline when displaying text on the
console)

●​ renamed class tense.YamiTk to TenseTk

●​ several internal enumerator classes changed base class from IntFlag
(types_collection.IntegerFlag) to Enum to prevent math operations on their
members

●​ method tense.fencord.Fencord.fixedEmbed() is now marked as experimental
and not available at runtime

●​ class tense.fencord.Servers is now marked as experimental and not available
at runtime (argument: error after recent tests)

●​ cancelled text styling methods from tense.fencord.Fencord class
●​ revamp in class tense.fencord.FontStyles: added new method addText(),

constructor now features entry text parameter along with styling option (2
parameters)

●​ renamed class tense.fencord.FontStyles to FontStyler
●​ removed properties from class tense.fencord.Fencord: getTree and getClient

(instead use tree and client)

Version 0.3.27rc2 (PyPi/Zip: 27th Oct 2024)
Not many things were logged. In this case only change was adding finalmethod and
abstractmethod function into submodule tense.types_collection.
This version was planned to be uploaded on 3rd November 2024.

Version 0.3.27rc1 (PyPi: 20th Oct 2024 / Zip: 19th Oct 2024)
When going to release this version, it was ensured that every written declaration will
accord with Python 3.13 (while being on Python 3.12.7 in the meantime). More changes
(and most concern submodule tense.types_collection):

●​ handover of class Frozen and decorator frozen (first via class inheritance; both
defined in submodule tense.types_collection)

●​ classes Abstract and Final (submodule tense.types_collection) no longer
require keywords in subclass section, respectively: abstract = True and final =
True (these may be now omitted)

●​ cancelled functions classvar and finalvar (submodule
tense.types_collection)

●​ several bug fixes

This version was planned to be uploaded on 23rd October 2024.

Version 0.3.27b3 (PyPi/Zip: 13th Oct 2024)
Both changes concern declarations on the tense.types_collection submodule.

●​ Final is now class replacing FinalClass class, formally Final type referring to

typing.Final has been renamed to Final2 due to constancy failure
●​ a new class Allocator based on the use of bytearray.__alloc__

Version 0.3.27b2 (PyPi/Zip: 26th Sep 2024)
Changes mainly concern tense.types_collection submodule, one repair: class
tense.types_collection.Buffer: method __buffer__ type BufferFlags with support
before Python 3.12.

Version 0.3.27b1 (PyPi/Zip: 23rd Sep 2024)
●​ added 'tense.types_collection.AbstractMeta' type alias being equivalent to

'abc.ABCMeta' (use it as 'metaclass = AbstractMeta')
●​ more patches on 'tense.types_collection.Abstract' class, since now you can use

'class AbstractClass(Abstract, abstract = True)', and even `define()` static
method to create your keyword instead of 'abstract' (idea with that

●​ method has been actually retracted)
●​ implemented 'Tense.probability()' class method in Java (as static method);

access since version 0.4.0 (if not, then on either separate project or Tense 1.2.0)
●​ project on increasing possible max 'length' parameter value (powering by 2) via

2d list; tests will be done on 0.3.28rc1 (earlier: 0.3.27rc1). To disable this feature,
there will be option: 'TenseOptions.probabilityExtendedLength'

Version 0.3.27a5 (PyPi/Zip: 13th Sep 2024)
●​ general note: Tense will be prepared to have Python 3.13 supported, if final

release of that version is out (predicted: 1st Oct 2024)
●​ patched 'tense.types_collection.Abstract' class (use '_init_sentinel' subclass

parameter to success putting an abstract class), used on new class
'TenseOptions'. For uncertainty you can still use 'abc.ABC' or 'metaclass =
abc.ABCMeta' instead of this solution. There is no general note you should avoid
using 'tense.types_collection.Abstract' class anyway. Class 'TenseOptions' has to
feature attributes, which may be checked in various classes inside 'tense'
module, without initializing this class in overall

●​ decreased number of supported types in 'reckon()' function based on ABCs
extended by these types. Nevertheless, it still should work as intended. Change
also concerns 'abroad()' function, and its variations

●​ little change in inner code of 'Tense.probability()' to assemble inner variable's
'_length' correct type ('int', not 'Any')

●​ added >> and << operators support for 'tense.Tense' class; these work as these in
C/C++, however, they work vice versa (>> - output, << - input), unless setting
'Tense.streamLikeC' is set to True. To avoid getting many class 'tense.Tense'
initialization messages, there is setting 'TenseOptions.initializationMessages'. If
set to False (it has False by default), these messages won't take place, True
otherwise.

Version 0.3.27a4 (PyPi/Zip: 9th Sep 2024)
●​ Tense.any() and Tense.all() lost 'default' parameter
●​ added experimental submodule 'tense.databases' (do not use it yet)
●​ added math methods (class 'Math'): 'triangular()', 'pentagonal()', 'hexagonal()',

'heptagonal()', 'octagonal()', 'nonagonal()', 'decagonal()', 'polygonal()'

Version 0.3.27a3 (PyPi: 3rd Sep 2024 / Zip: 2nd Sep 2024)
●​ added class decorator for functions: 'tense.types_collection.ClassLike'
●​ same module: 'classvar()' and 'finalvar()' functions are now deprecated (for first

just use 'typing.ClassVar', for second - 'tense.FinalVar')

Version 0.3.27a2 (PyPi: 29th Aug 2024 / Zip: 28th Aug 2024)
●​ added variables 'Tense.versionId' and 'Tense.versionTuple' (see also

'tense.constants')
●​ versioning now on experimental local module 'tense._versioning' (accessible via

'tense.constants')
●​ 'Fencord.getClient' and 'Fencord.getTree' properties are now deprecated, use

'client' and tree' properties instead (Discord)
●​ Fencord class received 'id' and 'display' properties (Discord)
●​ added class method 'Tense.socket()'

Version 0.3.27a1 (PyPi/Zip: 27th Aug 2024)
●​ moved all Fencord styling methods to new class 'tense.fencord.FontStyles', these

in Fencord class are since now deprecated and will be removed on 0.3.27
(Discord)

●​ experimental method 'Fencord.send()' (Discord)
●​ migrated all exception classes to local module 'tense._exceptions' (accessible via

'tense.types_collection')

Version 0.3.26 (PyPi: 26th Aug 2024 / Zip: 24th Aug 2024)
●​ despite slight change in 'Tense.error()', this class method remains deprecated
●​ added methods 'Tense.isEllipsis()' (alias to 'value is ...'), 'Tense.toList()' (with

additional ABC ListConvertible), 'Tense.toString()', 'Tense.toStr()'
●​ added new auxiliary static method 'Fencord.fixedEmbed()' for preventing

25-field limit error by creating several Embed class instances (Discord)
●​ planning for 0.3.27 or 0.3.28 new instance method 'Fencord.send()', being

equivalent to 'Interaction.response.send_message()' (Discord)
●​ retracted support for 'tense_eight' module on PyPi (ensure you have 3.9 or

greater instead)

Version 0.3.26rc3 (PyPi/Zip: 21st Aug 2024)
●​ for 'tense.tcs' module included many variables, including __constants__, which

returns list of constants defined in that module
●​ renamed 'tense.tcs' to 'tense.types_collection', constants extracted from that

module migrated to a new module 'tense.constants'
●​ added 'parent' parameter for 'tense.fencord.Fencord.slashCommand()', 'servers'

parameter now support any iterable object filled with instances of
'discord.Object' and

●​ single 'discord.Object' class object (patched issue with
'tense.types_collection.Iterable' ABC; it wasn't returning an iterator, as it should)

●​ 'tense.types_collection' module received many new types and classes
●​ 'Tense.pick()' now supports any sequences, including sets
●​ added new methods: 'Tense.toString()', 'Tense.toStr()', 'Tense.toList()',

'Math.fact()', 'Tense.timeit()'
●​ 'tense_eight' isn't developed anymore, switch to 3.9 if your still stuck in 3.8 or

least

Version 0.3.26rc2 (PyPi: 16th Aug 2024 / Zip: 15th Aug 2024)
●​ decorator 'tense.fencord.Fencord.slashCommand()' has been restored after

experiments. Perhaps this decorator by my eye doesn't return the same type as
discord.app_commands.command() decorator, it actually works.

●​ function 'tense.FinalVar' became a constructible class (earlier: function).
Reference to 'tense.tcs.FinalVar' class.

●​ another patches in method 'Tense.owoify()'

●​ several classes received __all__ and __dir__ attributes, tense.Color class
received also __constants__ and other constants for so-called advanced styling

●​ cancelled classes tense.primary.TenseType and tense.primary.ModernString (last
one under experiments)

●​ added tkinter.IntVar class support for tense.Tense.random()
●​ several rewritten classes from 'enum' and 'tkinter' module became original

classes subclasses
●​ added class methods 'Tense.reverse()' (use on lists and strings, experimented on

sets, dicts) and 'Tense.architecture()' (your system's architecture)

Version 0.3.26rc1 (PyPi/Zip: 7th Aug 2024)
●​ now officially on PyPi repository! https://pypi.org/project/AveyTense/ Install via

'pip install AveyTense'. Supported versions since 3.9
●​ extended list of ABCs in module 'tense.tcs'
●​ added classes 'tense.ChangeVar' and 'tense.Color', class-like function

'tense.FinalVar'
●​ cancelled class 'tense.extensions.ANSIColor'
●​ 'tense.Tense.probability()' and 'probability2()' received support for 'tkinter.IntVar'

	AveyTense Project Change Log
	Versions and Changeovers
	Version 0.3.60* (30th Nov 2025)
	Version 0.3.59 (12th Nov 2025)
	Version 0.3.58 (30th Oct 2025)
	Version 0.3.57 (18th Oct 2025)
	Version 0.3.56 (6th Oct 2025)
	Version 0.3.55 (24th Sep 2025)
	Version 0.3.55b1 (21st Sep 2025)
	Version 0.3.55a2 (18th Sep 2025)
	Version 0.3.55a1 (15th Sep 2025)
	Version 0.3.54 (12th Sep 2025)
	Version 0.3.53 (30th Aug 2025) - Restructure Typing For Older Python Versions
	Version 0.3.52 (18th Aug 2025) - Restructure Typing
	Version 0.3.51 (3rd Aug 2025) - More Figurate Number Functions!
	Version 0.3.50 (12th July 2025)
	Version 0.3.49 (3rd July 2025)
	Version 0.3.48 (24th June 2025)
	Version 0.3.47 (12th June 2025) - Pre-PEP 570 Positional Parameters Support & Traceback Shortening
	Version 0.3.46 (30th May 2025) - Probability Decade & Backporting to Python 3.8
	Version 0.3.45 (16th May 2025)
	Version 0.3.44 (3rd May 2025)
	Version 0.3.43 (18th Apr 2025)
	Version 0.3.42 (2nd Apr 2025)
	Version 0.3.41 (14th Mar 2025)
	Version 0.3.40 (27th Feb 2025)
	Version 0.3.39 (14th Feb 2025)
	Version 0.3.38 (11th Feb 2025)
	Version 0.3.37 (9th Feb 2025)
	Version 0.3.37a1 (3rd Feb 2025)
	Version 0.3.36 (2nd Feb 2025)
	Version 0.3.35 (23rd Jan 2025)
	Version 0.3.34 (15th Jan 2025)
	Version 0.3.33 (25th Dec 2024)
	Version 0.3.32 (16th Dec 2024)
	Version 0.3.31 (8th Dec 2024)
	Version 0.3.30 (29th Nov 2024)
	Version 0.3.29 (PyPi/Zip: 27th Nov 2024)
	Version 0.3.28 (PyPi/Zip: 23rd Nov 2024)
	Version 0.3.27 (PyPi: 22nd Nov 2024 / Zip: 11th Nov 2024)
	Version 0.3.27rc2 (PyPi/Zip: 27th Oct 2024)
	Version 0.3.27rc1 (PyPi: 20th Oct 2024 / Zip: 19th Oct 2024)
	Version 0.3.27b3 (PyPi/Zip: 13th Oct 2024)
	Version 0.3.27b2 (PyPi/Zip: 26th Sep 2024)
	Version 0.3.27b1 (PyPi/Zip: 23rd Sep 2024)
	Version 0.3.27a5 (PyPi/Zip: 13th Sep 2024)
	Version 0.3.27a4 (PyPi/Zip: 9th Sep 2024)
	Version 0.3.27a3 (PyPi: 3rd Sep 2024 / Zip: 2nd Sep 2024)
	Version 0.3.27a2 (PyPi: 29th Aug 2024 / Zip: 28th Aug 2024)
	Version 0.3.27a1 (PyPi/Zip: 27th Aug 2024)
	Version 0.3.26 (PyPi: 26th Aug 2024 / Zip: 24th Aug 2024)
	Version 0.3.26rc3 (PyPi/Zip: 21st Aug 2024)
	Version 0.3.26rc2 (PyPi: 16th Aug 2024 / Zip: 15th Aug 2024)
	Version 0.3.26rc1 (PyPi/Zip: 7th Aug 2024)

