
Compile to Learn to Compile:
There and Back Again

ACACES 2021 — albertcohen@google.com
This reading list was compiled in the context of a course at the ACACES 2021 summer school,
organized by HiPEAC and TETRAMAX in Fiuggy, Italy.

Course Abstract
The lurking optimizing compiler dragons are not going away any time soon. Intrepid
computer scientists and engineers lured by glittering performance continue to struggle
with complex computer architectures. The orchestration of computations,
communication and storage on distributed and heterogeneous systems is not getting
any simpler. Still, systems have been designed to tame the beast, and some of them
made tremendous progress towards hiding all this complexity to end users while
delivering excellent performance levels. This is particularly true in the field of Machine
Learning (ML), and tensor compilers in particular. Conversely, ML-based compiler
techniques have become more widespread, addressing some of the most difficult
optimization problems faced by tensor compilers.

We will review some of the interactions between machine learning and compilation in
this never-ending quest for performance. Beyond performance, we will also raise
research and engineering challenges in compiler construction, semantics and
algorithms crossing abstractions and languages.

The course will run over 5 lectures, covering the following topics:

1.​ Bridging the abstraction gap in ML frameworks: from automatic differentiation
to code generation for tensor algebra.

2.​ Parallelizing compilers, there and back again: from the parallelization of Fortran
dusty decks to modern tensor compilers.

3.​ Good abstractions are like ghosts, which everybody talks about and few have
seen: from equational reasoning to polyhedra and structured operations.

4.​ Heading into the dragon’s lair, a.k.a. the construction of ML compilers:
comparing XLA, TVM, Tensor Comprehensions and MLIR.

https://www.hipeac.net/acaces/2021/#/program/courses/27/
https://www.hipeac.net/
https://www.tetramax.eu/

5.​ The Eagles are coming! To the rescue of the defenseless compiler engineer:
ML-based compilation heuristics and autotuning.

Course Material

JAX
●​ https://jax.readthedocs.io/en/latest/index.html
●​ https://github.com/google/jax
●​ https://bit.ly/jax-tpu

Automatic Differentiation
●​ https://mblondel.org/teaching/autodiff-2020.pdf
●​ https://sscardapane.github.io/learn-autodiff

XLA
●​ https://www.tensorflow.org/xla

DNN Fusion
●​ PLDI 2021

TVM
●​ https://tvm.apache.org
●​ OSDI 2018

Tensor Comprehensions
●​ https://research.fb.com/downloads/tensor-comprehensions
●​ https://dl.acm.org/doi/10.1145/3355606

FLAME/BLIS
●​ https://github.com/flame/blis

https://jax.readthedocs.io/en/latest/index.html
https://github.com/google/jax
https://bit.ly/jax-tpu
https://mblondel.org/teaching/autodiff-2020.pdf
https://sscardapane.github.io/learn-autodiff
https://www.tensorflow.org/xla
https://dl.acm.org/doi/10.1145/3453483.3454083
https://tvm.apache.org/
https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_chen.pdf
https://research.fb.com/downloads/tensor-comprehensions/
https://dl.acm.org/doi/10.1145/3355606
https://github.com/flame/blis

MLIR
●​ https://ieeexplore.ieee.org/abstract/document/9370308

Further Reading

Graph optimization
●​ https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
●​ https://github.com/jiazhihao/TASO

TensorFlow Lite (embedded/mobile inference)
●​ https://www.tensorflow.org/lite

XLA
●​ Phothilimthana et al. A Flexible Approach to Autotuning Multi-Pass Machine Learning

Compilers, PACT 2021 (to appear)

Telamon
●​ CC 2017: Beaugnon et al., Optimization space pruning without regrets
●​ arXiv preprint: Beaugnon et al., On the Representation of Partially Specified

Implementations and its Application to the Optimization of Linear Algebra Kernels

MLIR
●​ https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf
●​ https://mlir.llvm.org/talks

Polyhedral Compilation
●​ isl library: https://repo.or.cz/w/isl.git
●​ Bastoul “Code generation in the polyhedral model is easier than you think”, PACT 2004
●​ Grosser, Verdoolaege, Cohen “Polyhedral AST generation is more than scanning

polyhedra”, TOPLAS 2015
●​ Feautrier “Some efficient solutions to the affine scheduling problem” (part I and II), Intl.

Journal of Parallel Programming 21(5) and 21(6).

https://ieeexplore.ieee.org/abstract/document/9370308
https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf
https://github.com/jiazhihao/TASO
https://www.tensorflow.org/lite/
https://ai.google/research/pubs/pub46935
https://arxiv.org/abs/1904.03383
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf
https://mlir.llvm.org/talks/
https://repo.or.cz/w/isl.git

●​ Bondhugula, Hartono, Ramanujam, Sadayappan “A practical automatic polyhedral
parallelizer and locality optimizer”, PLDI 2008

●​ Vasilache, Meister, Baskaran, Lethin “Joint scheduling and layout optimization to enable
multi-level vectorization”, IMPACT 2012

●​ Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar, Cohen “Modeling the conflicting
demands of parallelism and Temporal/Spatial locality in affine scheduling”, CC 2018

ML for Compilers
●​ Wang and O’Boyle’s survey (U. Lancaster and U. Edinburgh):

https://ieeexplore.ieee.org/document/8357388
●​ Cummins and Leather’s survey (Facebook Research):

https://research.fb.com/publications/machine-learning-in-compilers-past-present-and-futu
re

ML for Systems
●​ Maas’s Taxonomy: https://dl.acm.org/doi/abs/10.1109/MM.2020.3012883
●​ Fursin’s CK: http://cknowledge.org (supporting MLPerf, ACM Artifact Evaluation)
●​ https://www.dividiti.com

https://ieeexplore.ieee.org/document/8357388
https://research.fb.com/publications/machine-learning-in-compilers-past-present-and-future
https://research.fb.com/publications/machine-learning-in-compilers-past-present-and-future
https://dl.acm.org/doi/abs/10.1109/MM.2020.3012883
http://cknowledge.org
https://www.dividiti.com/

	Compile to Learn to Compile:
	There and Back Again
	ACACES 2021 — albertcohen@google.com

	Course Abstract
	Course Material
	JAX
	Automatic Differentiation
	XLA
	DNN Fusion
	TVM
	Tensor Comprehensions
	FLAME/BLIS
	MLIR

	Further Reading
	Graph optimization
	TensorFlow Lite (embedded/mobile inference)
	XLA
	Telamon
	MLIR
	Polyhedral Compilation
	ML for Compilers
	ML for Systems

