
Installing and Configuring
Arch Linux on your 2012
Nexus 7
A step by step guide

Introduction
Why Arch Linux
Why This Guide

Preparation of the host computer and the Nexus
Enable Android Debug Bridge (adb) on your Nexus

Windows
Setting up fastboot (and adb) on your computer

Windows
Mac OS X
Linux

Unlock the bootloader
Installing MultiROM

Installing a custom recovery
Installing MultiROM from the Android App

Installing SuperSU (root)
Installing the MultiROM manager from the play store

Installing MultiROM manually from the command line
Installing the Arch Image
Connecting to your Nexus

Windows
Linux
Mac OS X

Getting WiFi working
Create a user and setup your passwords
Install and configure sudo
Install and configure SSH
Setting up Bluetooth
Setting up X (the windowing system)

Onscreen keyboard
Graphical Login

Logging in without a keyboard
On screen keyboard in LightDM
Automatic login
Login without password

Tweaking touch
Flash
Kernel plans and other notes
Changelog

Introduction
TL;DR Use the table of contents to skip to the section you need.
Go here to discuss this document

I’ve also enabled comments since I’ve noticed a lot more traffic coming here, then realized this
document is a top google hit so the traffic may be coming from google not xda. Feel free to
comment on this document, or e-mail me.

Why Arch Linux
Arch Linux is kind of a mixed bag. Upon installing the system you will have little more than a
command line with base *nix functionality. Unlike Ubuntu or some other popular distributions it
does not come ready to go out of the box. The system is however quite easy to set up to meet
your needs exactly, if you are willing to spend a little extra time to set it up. There are
advantages and disadvantages to this approach.

The great thing about a system like this, especially when you have limited resources (like on
your Nexus) is that there is absolutely no bloat. Things should run more smoothly and quickly,
allowing you to use your system more efficiently. Since you set everything up, you also have a
much better understanding of how the system works. This is great since you will be able to
much more easily fix things when they inevitably break. The system is also very easy to
configure and work with.

The downside is that you spend longer setting up your system. Things don’t just work out of the
box. Want a specific program? You need to install it. Want networking to start on boot? You’ll
have to tell it to. Nothing is automatic. Unless you manually set up the automatic functionality ;-)
You will also need to be able to use a command line and edit text files to configure the system.

There is a wealth of documentation on Arch Linux, and if you aren’t proficient with *nix systems

http://forum.xda-developers.com/showthread.php?t=2368304
mailto:ylixir@gmail.com

already you will learn a lot by running Arch. You will not however have a system that just works
30 seconds after you install.

More information about the philosophy and goals of Arch can be found here.

Why This Guide
The Arch Linux Wiki is a fantastic resource. However, currently there is no information specific
to the Nexus 7. Furthermore, the wiki’s install guide targets desktops and laptops. This guide is
intended to bridge that gap.

This guide has three goals. Firstly to be a walkthrough setup guide for anyone who has no
experience with Arch. Secondly, to be a reference guide to setting up features that are specific
to the Nexus 7 for those who have already gone through the walkthrough, or have more
experience with Linux and Arch on more traditional computers. Thirdly, to provide a bridge that
will allow novices and experienced users alike to get comfortable enough with Arch on their
Nexus to branch off from this guide and use the Arch Wiki to further customize their installation
and find answers to questions beyond the scope of this guide.

Preparation of the host computer and
the Nexus
If your Nexus is already rooted, you can actually do the install without ever plugging your Nexus
into your computer. Just skip to Installing the MultiROM manager from the play store. If you are
not rooted, carry on.

Preparing for the installation is actually much more involved than the actual installation. First
you will need to get the fastboot and adb programs onto your computer. Then you’ll need to
unlock your bootloader. Thirdly, you will need to install MultiROM by Tassadar. Finally you will
do the actual install. If you have already done any of these steps, you may skip them.
Additionally, fastboot is only required for the unlock and the installation of MultiROM, you don’t
need it for the actual installation of Arch.

Enable Android Debug Bridge (adb) on your Nexus
If your Nexus isn’t booted up, go ahead and start it up. Go to “Settings->About tablet”. Tap on
“Build Number” until it says you are a developer (about seven times). Go back to the main
Settings screen. You should now have a “Developer options” choice. Go into “Developer
options” and enable “USB debugging”.

https://wiki.archlinux.org/index.php/Arch_Linux
https://wiki.archlinux.org/
https://wiki.archlinux.org/
http://forum.xda-developers.com/showthread.php?t=2011403
http://forum.xda-developers.com/member.php?u=3418703
http://forum.xda-developers.com/showthread.php?t=2011403

Plug your Nexus into your computer using the USB cable.

Windows
If you are running Windows, you’ll need to install some additional drivers at this point. You can
get them from Asus. Choose “Others” for the OS. Then pick the global option under USB. Unzip
the resulting file to create a usb_driver folder. Follow these steps to get the driver installed:

1.​ Open Device manager. The steps to get there may vary slightly depending on which
version of Windows you have, but they should be similar to below.

a.​ Find “Computer” on your desktop or in your start menu.
b.​ Right click computer.
c.​ Choose properties.
d.​ Choose device manager.

2.​ Right click Nexus 7.
3.​ Choose “Update Driver Software...”
4.​ Choose “Browse my computer for driver software”
5.​ Click “Browse...”
6.​ Choose the usb_driver folder you created earlier
7.​ Click “Next”
8.​ Choose “Install”

Setting up fastboot (and adb) on your computer
The fastboot utility is required to unlock the Nexus, and install the MultiROM utility. These
instructions will be similar for Windows and Macs.

Windows
You’ll need to get the Android SDK from here. Go ahead and choose to “Download the
SDK/ADT Bundle for Windows”. I’ll assume you unzip the resulting download into your C:\
drive resulting in a folder named C:\adt-bundle-windows-x86_64-20130522\. Adjust
accordingly if you put it somewhere else or if the folder is named differently.

Open up a command line by clicking on Start and type cmd.exe under the “Run..” option or the
“Search programs and files” option. Use the following command to change to the proper
directory:
cd c:\adt-bundle-windows-x86_64-20130522\sdk\platform-tools

Mac OS X
You’ll need the Android SDK, just as in windows. Get it here. Open the Terminal program.
Assuming you unzipped the to your home directory type the following command in your
terminal:
$ cd ~/adt-bundle-mac-x86_64-20130522/sdk/platform-tools

http://support.asus.com/Download.aspx?SLanguage=en&m=Nexus+7&p=28&s=2
http://forum.xda-developers.com/showthread.php?t=2011403
http://developer.android.com/sdk/index.html

Linux
Your distribution probably includes a package for these tools. Simply install them from your
package manager. Examples follow (source)

Debian based (Ubuntu, Mint, Sid, etc)
$ sudo apt-get install android-tools-fastboot android-tools-adb

Fedora
$ sudo yum install android-tools

Arch
$ sudo pacman -S base-devel
$ wget
https://aur.archlinux.org/packages/an/android-sdk-platform-tools/android-sdk-pl
atform-tools.tar.gz
$ tar -xzf android-sdk-platform-tools.tar.gz
$ cd android-sdk-platform-tools
$ makepkg -s
$ sudo pacman -U android-sdk-platform-tools*.tar.xz

Alternatively you may use your favorite AUR manager to install the android-sdk-platform-tools
package.

Open up a terminal emulator and you are good to go for the next steps.

Unlock the bootloader
Obviously if you’ve already unlocked your bootloader you can skip this step.

WARNING: Unlocking the bootloader will erase any data you have on your Nexus. Backup if
you care about anything on the device.

Type the following command into your terminal window:
adb reboot bootloader

Attention: If you are running Mac you may have to change adb to ./adb and fastboot to
./fastboot. In Linux you may have to prepend sudo to make it sudo adb and sudo
fastboot.

After your Nexus reboots to the screen with the Android on his back, type in:
fastboot oem unlock

Use the volume key to highlight “Yes” then the power button to select it. At the bottom of your

http://wiki.cyanogenmod.org/w/Doc:_fastboot_intro
https://aur.archlinux.org/packages/an/android-sdk-platform-tools/android-sdk-platform-tools.tar.gz
https://aur.archlinux.org/packages/an/android-sdk-platform-tools/android-sdk-platform-tools.tar.gz
https://aur.archlinux.org/packages/android-sdk-platform-tools/

screen it should now say in red letters “Lock state - unlocked”. Now is a good time to go ahead
and set up Android again. Use fastboot to reboot your computer and come back once you are
done and you have enable USB Debugging again. I’ll wait.
fastboot reboot

Installing MultiROM
This is the MultiROM thread. You can get the files you’ll need by scrolling down to the second
post where it says “Download”. Alternatively you may get the files from Tassadar’s goo.im
mirror.

Installing a custom recovery
You need to be in the bootloader for this step. You may type the following command into your
terminal window on your computer to get to the bootloader:
adb reboot bootloader

We will install the version of TWRP that has been modified to work with MultiROM. You can get
it from the MultiROM thread or from Tassadar’s goo.im mirror. The file you need is named
TWRP_multirom_grouper_*.img. Download this to your computer. In the following, replace <path
to download> with the location you downloaded TWRP_multirom_grouper_*.img to. For
example, C:\Users\ylixir\Downloads or ~/Downloads. Remember you may have to
modify the fastboot command on Linux or Mac, see the Unlock the bootloader section for more
information.
fastboot flash recovery <path to download>/TWRP_multirom_grouper_*.img

After this has finished you may reboot.
fastboot reboot

You may now proceed to Installing MultiROM from the Android App or Installing MultiROM
manually from the command line. Choose your own adventure!

Installing MultiROM from the Android App
First we need to install root, if you are already rooted, you can skip to Installing the MultiROM
manager from the play store.

Installing SuperSU (root)
You should be in the TWRP recovery for this step. If you are not then type in the following
command into the terminal on your computer:
adb reboot recovery

TWRP will actually offer to root for you, simply choose the “Reboot” option followed by the

http://forum.xda-developers.com/showthread.php?t=2011403
http://goo.im/devs/Tassadar/multirom/grouper/
http://goo.im/devs/Tassadar/multirom/grouper/
http://forum.xda-developers.com/showthread.php?t=2011403
http://goo.im/devs/Tassadar/multirom/grouper/

“System” option. It will ask you if you wish to install SuperSU. Just swipe the blue dot with the
white arrow to root your Nexus.

After the Nexus finishes rebooting, find the “SuperSU Installer” in your app drawer and run it.
Choose the “Play” option. Choose “Update” from the Play Store and “Accept”.

Go back to your app drawer and open the new SuperSU app. You will probably need to update
the binary now. I see no reason to get your recovery involved, simply choose the “Normal”
option.

“Installation success !” You can reboot as recommended now if you like.

Installing the MultiROM manager from the play store
If you are reading this guide from your computer you can follow this link and to install the
MultiROM manager to your Nexus (make sure you have your Nexus 7 selected after you click
“Install” if you do it from your computer). Alternatively, you may also install it from the Play Store
on your Nexus. Search for “multirom manager” and it should come right up. The author of the
app you want is named “Vojtech Bocek”--incidentally a.k.a. Tassadar, the person that made this
all possible.

Open the “MultiROM Manager” app after you have installed it. Choose “Grant” when it asks for
superuser permissions. It should give you the options to install MultiROM itself (basically the
boot menu), Recovery (a modified TWRP), and Kernel (a modified kernel that enables the
magic).

You must install MultiROM and a kernel. If you have updated to Kit Kat then choose “Stock 4.4”
for your kernel. Otherwise pick the one that fits what you have on your Nexus. If you already did
the Installing a custom recovery step above you don’t need to choose the “Recovery” option. If
you haven’t done this step, then choose “Recovery”.

After you have made your selections, choose “Install”. It will prompt you to reboot, go ahead.

Now you may skip to Installing the Arch Image.

Installing MultiROM manually from the command line
You need the multirom-*-grouper.zip and the kernel_kexec_grouper_*.zip that is appropriate for your
system. You can get them from the MultiROM thread or from Tassadar’s goo.im mirror.

You may download the files directly with your Nexus, or onto your computer and copy them
over. Anywhere is fine--I put mine in the Download folder. Now reboot your Nexus into the
bootloader again.

https://play.google.com/store/apps/details?id=com.tassadar.multirommgr
http://forum.xda-developers.com/showthread.php?t=2011403
http://goo.im/devs/Tassadar/multirom/grouper/

adb reboot bootloader

Once it has come up choose “Install”. Then find the multirom-*-grouper.zip. Choose “Add More
Zips” and also select the kernel_kexec_grouper_*.zip. Then swipe to confirm the installation. When
you have the blue “Successful” message, tap the “Home” button.

Installing the Arch Image
You’ll need Arch itself from this post. The link you want is the mediafire one at the bottom of the
post. The file is arch_20130626.mrom.

You may download the file directly with your Nexus, or onto your computer and copy it over.
Anywhere is fine--I put mine in the Download folder. Reboot your Nexus into the bootloader
again.
adb reboot bootloader

Now we install Arch by choosing “Advanced->MultiROM->Add ROM”. Pick the “MultiROM
installer” option and tap “Next”. Choose arch_20130626.mrom. Swipe to confirm. Now
choose “Reboot System”.

When MultiROM comes up, choose “arch_20130625” to boot into Arch Linux. If you choose
“Internal” instead, you will boot into Android.

Congratulations on your newly installed (and fairly useless as of now) Arch Linux system!

Connecting to your Nexus
Wiki link for more information

Arch boots to a command line by default, so you’ll need to get a keyboard attached to do
anything useful. One option is to connect a USB keyboard with an OTG cable. They can be had
for very cheap on Amazon and elsewhere. Another (free) option is to make your computer into a
serial console and connect with that. The following instructions are operating system specific
instructions on how to do that.

Note: After you’ve connected either via keyboard or via USB serial you type in “root” and “root”
again for your username and password to log in.

Windows

http://forum.xda-developers.com/showpost.php?p=42971192&postcount=237
http://www.mediafire.com/download/8ez24zzje9kzpep/arch_20130626.mrom
https://wiki.archlinux.org/index.php/Working_with_the_serial_console
http://www.amazon.com/s/url=search-alias%3Daps&field-keywords=usb%20otg%20cable
https://www.google.com/search?q=usb+otg+cable&tbm=shop

If you have access to a Linux system, I recommend that over Windows, but if you must use
Windows here are the instructions. I have Windows 7 64 bit so the following instructions may
need to be adjusted depending on what version you have.

You’ll need some kind of terminal program. PuTTY will work for both serial communication and
ssh. Get it here.

Plug in the Nexus to your USB port. The driver will probably fail to install properly. It did not work
out of the box for me. The working driver is just one inf file that just tells Windows to pretend
your Nexus is a serial console. Get the driver from here.

Follow these steps to get the driver installed:

9.​ Open Device manager. The steps to get there may vary slightly depending on which
version of Windows you have, but they should be similar to below.

a.​ Find “Computer” on your desktop or in your start menu.
b.​ Right click computer.
c.​ Choose properties.
d.​ Choose device manager.

10.​Right click gadget serial v2.4
11.​Choose properties
12.​Click “Update driver”
13.​Choose “Browse my computer for driver software”
14.​Let me pick from a list of device drivers on my computer
15.​Choose “Have disk...”
16.​Click “Browse...”
17.​Choose the “linux-cdc-acm.inf” that you downloaded earlier
18.​Select “Gadget Serial”
19.​Click “Next”
20.​Choose to “Install anyway”

Take note of the COM number for the device. Mine is COM3 so I’ll use that in the instructions,
replace the 3 with whatever number you have. Open the putty program you downloaded earlier.
Choose “Serial” under “Connection type:”. Change the “Serial line” to “COM3”. Click open.

Linux
Plug in the Nexus to your USB port. Open up a terminal and type:
$ sudo screen /dev/ttyACM0 115200

The screen program may not be installed. If it isn’t already installed then get it with your
package manager of choice. In a ubuntu, mint, or other debian flavored distribution the
command below should install it:
$ sudo apt-get install screen

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://www.kernel.org/doc/Documentation/usb/linux-cdc-acm.inf

Mac OS X
I don’t have a Mac to test this with, but Linux and Mac both share a unix heritage so the process
should be similar to Linux. You’ll need to open the “Terminal” program to get the unix command
line. The device you are looking for is /dev/cu.usbmodem* where * is some value. Type ls
/dev/cu.usbmodem* to find the correct device.
For example:
$ sudo screen /dev/cu.usbmodemfa1331 115200

Thanks for the tip Aiden Foxx.

Getting WiFi working
Wiki link for more information

If you don’t like netctl for managing your wifi, options not covered here include wicd and
Network Manager.

As of this writing (July 16, 2013) the system comes with the netcfg package for networking.
Netcfg is, however, being phased out in favor of netctl. So to properly set up networking we will
have to first configure your wifi, then install netctl, and configure your wifi again :-/

First get wifi working:

wifi-menu

After you’ve configured wifi, we’ll need to get our system up to date, then download the netctl
packages, and finally remove netcfg and install netctl
pacman -Syu

pacman -Sw netctl wpa_actiond iproute2 iptables

pacman -Rs netcfg

pacman -S netctl wpa_actiond

Now we need to stop the interface and move the netcfg profile to netctl. We will then need to
edit the profile configuration. I use vi, but feel free to use nano or whatever floats your boat. You
can get the wlan0-profile-name by doing a $ls /etc/network.d/.
netctl stop wlan0-profile-name
mv /etc/network.d/wlan0* /etc/netctl/
vi /etc/netctl/wlan0-profile-name

Now rename the variables that are in all capitals to UpperCamelCase. So “CONNECTION”

https://wiki.archlinux.org/index.php/Netctl
https://wiki.archlinux.org/index.php/Wicd
https://wiki.archlinux.org/index.php/NetworkManager
https://www.archlinux.org/news/netctl-is-now-in-core/

becomes “Connection”. Leave ESSID and IP in capital. Also remove the single quote character
from around the values after the equal signs, but leave the single quote around the value for
Description and ESSID. You may also want to add a line with the following to fix some
connection issues:
TimeoutDHCP=30

At this point I couldn’t start the network, but I could ping google, so let’s just reboot and see
what we see. First lets set it to start automatically.
netctl start wlan0-profile-name
systemctl enable netctl-auto@wlan0.service
reboot

That gets your wifi working, but you may want to follow the next couple of steps to make things
a little more secure.

Change permissions:
chmod 600 /etc/netctl/wlan0-profile-name

Passphrase Obfuscation
First get an obfuscated passphrase with the following command:
wpa_passphrase [ssid] [passphrase]

Now edit your profile configuration file. As always feel free to replace vi with nano.
vi /etc/netctl/wlan0-profile-name

Replace the Key=your_key with Key=\”wpa_passphrase_output

Create a user and setup your passwords
Wiki link for more information

Use the following commands to set up a username for yourself and to set up your passwords.
Change “ylixir” to whatever username you want.

useradd -m -g users -s /bin/bash ylixir

chfn ylixir

passwd ylixir
passwd root
exit

https://wiki.archlinux.org/index.php/Netctl#Passphrase_obfuscation_.28256-bit_PSK.29
https://wiki.archlinux.org/index.php/Users_and_Groups#User_management

You may now type in your new username and password to log in.

Install and configure sudo
Wiki link for more information

The sudo command allows you to run commands as root (superuser do). It’s basically the same
as running something as an Administrator on Windows. Logging in as root generally considered
a bad idea. However you often need to be root to perform maintenance on your system. This
convenience utility makes it easy to perform root commands while logged in as another user.

You need to switch to root to install packages. The su command does this. When it asks for a
password, use your root password. After you are root you may install sudo.
$ su
pacman -S sudo

Okay, now that sudo is installed we need to configure it.

visudo

or

EDITOR="nano" visudo

Find the following line:
%wheel ALL=(ALL) ALL

Remove uncomment it by removing the # and space from the beginning so it becomes:

%wheel ALL=(ALL) ALL

Save and exit out of the editor.

Okay, now any user of the wheel group can use sudo. You better add your own username to
the wheel group. And then exit out of superuser mode. You will also have to log out of your
own user in order for the changes in your group membership to take effect.

gpasswd -a ylixir wheel

exit
$ exit

Install and configure SSH

https://wiki.archlinux.org/index.php/Sudo

Wiki link for more information

If you wish you may install ssh to allow you to log in over a network among other things.
$ sudo pacman -S openssh

It’s probably a bad idea to allow root logins from over a network. Lets disable that by editing the
configuration file. You may use nano instead of vi if you wish.
$ sudo vi /etc/ssh/sshd_config

Add the following line to the configuration file.

PermitRootLogin no

Now it’s all set up, start it, and tell the system to start it automatically on boot.

$ sudo systemctl start sshd

$ sudo systemctl enable sshd.service

If you wish to find out what IP address your Nexus is using type in:
$ ip addr show dev wlan0

Now you may use PuTTY if on Windows, or the ssh command from a terminal on Linux or Mac
to log into your Nexus over the network.

Setting up Bluetooth
Wiki link for more information
Another wiki link
I stole some scripting from Ubuntu and from this guy and I think I have bluetooth up and
running.

First, install some packages we need.
$ sudo pacman -S rfkill bluez-utils base-devel gstreamer0.10-base libsndfile
$ wget -c https://aur.archlinux.org/packages/bl/bluez4/bluez4.tar.gz
$ tar -xzf bluez4.tar.gz
$ cd bluez4

you can use nano instead of vi in the next command if you wish
$ vi PKGBUILD

Change the arch line to include ‘armv7h’

https://wiki.archlinux.org/index.php/Ssh
https://wiki.archlinux.org/index.php/Bluetooth
https://wiki.archlinux.org/index.php/Bluetooth_Keyboard
https://bbs.archlinux.org/viewtopic.php?pid=1259381
https://aur.archlinux.org/packages/bl/bluez4/bluez4.tar.gz

$ makepkg -s
$ sudo pacman -U *-armv7h.pkg.tar.xz

Next we need to create the scripts to start bluetooth on boot.
$ sudo vi /usr/bin/load_bcm4330.sh

Enter the following into this file:
#!/bin/bash​
​
#​
BCM4330 BT Adapter upload rampatch​
​
env Variables​
logfile=/var/log/rampatch.log​
​
logfile check​
if ! test -f ${logfile} ; then​
 # logfile does not exist, so create it​
 touch $logfile​
fi​
​
echo "---">>$logfile​
entrytime=$(date +"%Y-%m-%d %H:%M:%S")​
echo $entrytime " applying rampatch to BCM4330 bluetooth adapter" \
>> $logfile​
​
wait for hci0 to become available and usable​
#sleep 1​
/usr/bin/rfkill unblock bluetooth​
/usr/bin/brcm_patchram_plus --patchram /lib/firmware/bcm4330.hcd \​
--no2bytes \​
--scopcm=0,2,0,0,0,0,0,0,0,0 \​
--enable_hci \​
--enable_lpm \​
--baudrate 3000000 --use_baudrate_for_download \​
--tosleep=50000 \​
/dev/ttyHS2 >> $logfile​
​
entrytime=$(date +"%Y-%m-%d %H:%M:%S")
echo $entrytime " ..done" >> $logfile
echo "--”>>$logfile​

Next we need to create the scripts to start bluetooth on boot Source.
$ sudo vi /usr/bin/connect_bt.sh

Enter the following into this file:
#!/bin/bash​

​

address="AA:BB:CC:DD:EE:FF"​

​

while (sleep 1)​

do​

http://askubuntu.com/questions/17504/how-can-i-have-a-bluetooth-keyboard-auto-connect-at-startup

connected=`hidd --show` > /dev/null​

if [[! $connected =~ .*${address}.*]] ; then​

hidd --connect ${address} > /dev/null 2>&1​

fi​

done

Now we set the permissions for those files, and edit the systemd files.
$ sudo chmod u+x /usr/bin/load_bcm4330.sh
$ sudo chmod u+x /usr/bin/connect_bt.sh
$ sudo vi /etc/systemd/system/loadfw.service

And enter the following into this file:
[Unit]​
Description=Load firmware into BCM4330 bluetooth USB adapter​
After=basic.target​
After=suspend.target​
After=hibernate.target​
​

[Service]​
Type=simple​
ExecStart=/usr/bin/load_bcm4330.sh​
​

[Install]​
WantedBy=basic.target​
WantedBy=suspend.target​
WantedBy=hibernate.target

And another file
$ sudo vi /etc/systemd/system/connectbt.service

Which contains
[Unit]​
Description=Connect to bluetooth devices​
After=basic.target​
After=suspend.target​
After=hibernate.target​
​

[Service]​
Type=simple​
ExecStart=/usr/bin/connect_bt.sh​
​

[Install]​
WantedBy=basic.target​
WantedBy=suspend.target​
WantedBy=hibernate.target

Create new file /etc/udev/rules.d/10-local.rules Source

Set bluetooth power up​
ACTION=="add", KERNEL=="hci0", RUN+="/usr/bin/hciconfig hci0 up"

https://bbs.archlinux.org/viewtopic.php?id=166362

And finally set it to start on boot:
$ sudo systemctl start loadfw.service
$ sudo systemctl enable loadfw.service
$ sudo systemctl start bluetooth.service
$ sudo systemctl enable bluetooth.service

At this point you may want to do an hidd --search to find out the addresses of your devices
and edit connect_bt.sh accordingly
$ sudo systemctl start connectbt.service
$ sudo systemctl enable connectbt.service

Note that if you wish to add more than one device you can adjust the connect_bt.sh script to
add an address2, address3 etc, and add the if...fi block for each device.

Setting up X (the windowing system)
Install the xorg package, and remove the bogus xorg.conf
$ sudo pacman -S xorg xorg-xinit
$ sudo rm /etc/X11/xorg.conf
$ sudo pacman -S xfce4 xfce4-goodies gamin
$ sudo pacman -S kde
$ sudo pacman -S enlightenment17
$ sudo pacman -S lxde

Next make a new /etc/X11/xorg.conf.d/01-nexus7-input.conf
Enter the following into this file (Cribbed but modified from here):

Section "ServerFlags"​
 Option "AllowEmptyInput" "False"​
EndSection​
​
Section "InputClass"​
 Identifier "Nexus 7 Touchscreen"​
 MatchProduct "elan-touchscreen"​
 Driver "evdev"​
 Option "Ignore" "off"​
Option "SwapAxes" "yes"​
Option "InvertX" "yes"​
Option "InvertY" "no"​
EndSection​
​
Configure gpio keys​
Section "InputClass"​
 Identifier "HW keys"​
 MatchProduct "gpio-keys"​
 Driver "evdev"​
 Option "Ignore" "off"​

https://build.merproject.org/package/view_file?file=01-nexus7-input.conf&package=configs-nexus7&project=nemo%3Adevel%3Ahw%3Anv%3Ategra3%3Anexus7&rev=b68d3154e3b65516058cff32e0581353

EndSection
​

Also make a file for the video drivers. Note that you have two options for devices here. The
fbdev and the tegra. Tegra is faster but really glitchy. The fbdev on the other hand renders much
better, but is slow. Tegra is basically unusable for me, so I am currently using fbdev. This needs
to be fixed eventually
$ sudo vi /etc/X11/xorg.conf.d/10-nexus7-screen.conf

Section "Module"​
 Disable "dri"​
 Disable "dri2"​
 Disable "glx"​
 SubSection "extmod"​
 Option "omit xfree86-dga"​
 EndSubSection​
EndSection​

Section "Device"​
 Identifier "Tegra"​
 Driver "tegra"
Option "ARGBHWCursor" "true"​
EndSection
​
Section "Device"​
 Identifier "Framebuffer"​
 Driver "fbdev"
The rotate option makes the screen landscape mode
put a # in front of this line if you want portrait mode​
 Option "Rotate" "CW"​
EndSection​
​
Section "Monitor"​
 Identifier "Monitor"
The rotate option makes the screen landscape mode
put a # in front of this line if you want portrait mode​
 Option "Rotate" "right"​
EndSection​
​
Section "Screen"​
 Identifier "Screen"
remove the # from the driver you want to use
add a # to the driver you don’t want to use
#​ Device​"Tegra"​
​ Device​"Framebuffer"​
​
 Monitor "Monitor"​
EndSection​

$ vi .xinitrc
#exec startxfce4
#exec startkde
#exec enlightenment_start
exec startlxde

$ startx

A mouse will help make things useable but kind of defeats the point. A cheap stylus is smaller,
cheaper, and helps hit those tiny buttons.

Mer (plasma active) References
Nvidia references note that to get the newer X ABI 14 drivers, change the domain name to
developer.nvidia.com
Getting KDE working
Enlightenment 17 is also reported to be working

Onscreen keyboard
These are only really working for me on fbdev, the graphics are just so glitchy :-/

Pick one:
$ sudo pacman -S matchbox-keyboard
$ sudo pacman -S xvkbd
$ sudo pacman -S caribou
$ sudo pacman -S onboard
Caribou and Onboard both give errors starting up, but matchbox and xvkbd seem fine.

Graphical Login
I’ll cover installing lightdm. You can use a different one if you like, see the Arch Linux Wiki for
more information.
$ sudo pacman -S lightdm lightdm-gtk3-greeter
$ sudo systemctl enable lightdm

Upon reboot, lightdm will start automatically.

Logging in without a keyboard
You basically have three options here. The first is to get an on screen keyboard showing up on
the login screen. The second is setting up automatic login. And the third is setting up your
display manager to not require a password. I don’t have passwordless logins working yet. I’m
only going to cover lightdm in this guide. See the wiki/google for information on other display
managers.

On screen keyboard in LightDM

https://build.merproject.org/project/packages?project=nemo%3Adevel%3Ahw%3Anv%3Ategra3%3Anexus7
https://developer.nvidia.com/linux-tegra
http://forum.xda-developers.com/showpost.php?p=43176617&postcount=243
http://forum.xda-developers.com/showpost.php?p=43764247&postcount=4

You can tweak this to whichever keyboard you choose. You only need to edit
/etc/lightdm/lightdm-gtk-greeter.conf and change the keyboard= line. The keyboard is available
from the accessibility menu. I used:
keyboard=/usr/bin/xvkbd -geometry 800x300-0-0 -compact

Automatic login
You need to add yourself to the autologin group.
$ sudo groupadd autologin
$ sudo gpasswd -a USERNAME autologin

Edit the configuration file for lightdm:
$ sudo vi /etc/lightdm/lightdm.conf

In the [SetDefaults] section, add/edit the autologin-user= line. Make sure there is no # at
the beginning of the line. Also the timeout for good measure.

autologin-user=your-username

autologin-user-timeout=0

Login without password

Don’t quite have this working yet. With automatic login working anyway, multiple users is
probably a small use case so I’m going to leave it for now and come back later. The following
should get one close if one decides to try to get it working before I do.

You need to add yourself to the nopasswdlogin group.
$ sudo groupadd nopasswdlogin
$ sudo gpasswd -a USERNAME nopasswdlogin

Edit the configuration file for lightdm:
$ sudo vi /etc/pam.d/lightdm

Add the following line to the end of the file.

auth sufficient pam_succeed_if.so user ingroup nopasswdlogin

Tweaking touch
We’ll install touchégg to get touch working better. First we need the development tools, then
we’ll download the package specification, create the package, and install it.
$ sudo pacman -S base-devel
$ wget -c https://aur.archlinux.org/packages/fr/frame/frame.tar.gz
$ tar -xzf frame.tar.gz
$ cd frame
$ vi PKGBUILD

Change the arch line to include ‘armv7h’

https://aur.archlinux.org/packages/fr/frame/frame.tar.gz

$ makepkg -s
$ sudo pacman -U *-armv7h.pkg.tar.xz
$ cd ..
$ wget -c https://aur.archlinux.org/packages/gr/grail/grail.tar.gz
$ tar -xzf grail.tar.gz
$ cd grail
$ vi PKGBUILD

Change the arch line to include ‘armv7h’
$ makepkg -s
$ sudo pacman -U *-armv7h.pkg.tar.xz
$ cd ..
$ wget -c https://aur.archlinux.org/packages/ge/geis/geis.tar.gz
$ tar -xzf geis.tar.gz
$ cd geis
$ vi PKGBUILD

Change the arch line to include ‘armv7h’
$ makepkg -s
$ sudo pacman -U *-armv7h.pkg.tar.xz
$ cd ..
$ wget -c https://aur.archlinux.org/packages/to/touchegg/touchegg.tar.gz
$ tar -xzf touchegg.tar.gz
$ cd touchegg
$ vi PKGBUILD

Change the arch line to include ‘armv7h’
$ makepkg -s
$ sudo pacman -U *-armv7h.pkg.tar.xz
$ cd ..
$ mkdir -p ~/.config/touchegg
$ cp /usr/share/touchegg/touchegg.conf ~/.config/touchegg/touchegg.conf
$ vi ~/.config/touchegg/touchegg.conf

Tweak to your preferences. More info here. Then add touchegg to your xinitrc if you use startx
to start X, or xprofile if you use a display manager such as lighdm.
$ vi ~/.xinitrc

touchegg &
#exec startxfce4
exec startkde
#exec enlightenment_start
#exec lxde

or
$ vi ~/.xprofile

And add the line:
touchegg &

Flash

https://aur.archlinux.org/packages/gr/grail/grail.tar.gz
https://aur.archlinux.org/packages/ge/geis/geis.tar.gz
https://aur.archlinux.org/packages/to/touchegg/touchegg.tar.gz
https://code.google.com/p/touchegg/wiki/Main

I haven’t tried this yet, but I found this. There is also apparently a package in AUR.

Kernel plans and other notes
Currently there are some issues with the kernel. It’s old, which is a problem for bluez5. It is also
not configured to play nice with systemd, which arch has migrated to qq. So we need a new
one. I’m currently have one building, but it’s basically just the same one we have. Here are my
plans for this. I have basically two projects. One is a set of shell scripts to automate the building
of the kernel. These scripts will ideally work for any linux out there. The second is the actual
kernel tree. I’m putting my work up on github so anyone can follow along. The kernel scripts are
kernel-shell-game. The kernel tree is grouper-kernel.

You can try out a new kernel if you like. Check out the kernel shell games scripts. Run sudo
builder.sh with the following command line options:

1.​ setup
2.​ kernel get
3.​ kernel build
4.​ kernel boot

You will need fastboot and abootimg installed on your system for the last step and your nexus
connected to the PC in fastboot/boot loader mode. You will also need the initramfs file from the
boot directory in arch to be in the kernel_target directory

The process will likely be as follows:

1.​ Get the scripts to fire up a kernel from fastboot, so I can directly test my progress without
messing about with transferring files about and horking my arch setup.

2.​ Get a working kernel building without using the debianized process canonical has setup.
3.​ Fork the kernel tree right before canonical started messing with it and cherry-pick only

the ubuntu stuff that is absolutely necessary. For sure leave out all the debianized stuff.
4.​ Update to include systemd support.
5.​ Make a package that can be installed.

Once the kernel is straight, then I’ll focus on getting a clean bootstrap of the root filesystem
rolling. I’ll also hopefully be simplifying the instructions by providing packages to take care of a
lot of the grunt work.

As far as the graphics work, the video seems fine with ubuntu so it’s probably not a kernel issue.
I’ll have to take a look at their packages. Maybe we are just missing some libraries or
something.

And I’ll take it from there. Maybe make a setup program so people don’t have to plug in a
keyboard or a computer to get things functional. Maybe try to modify the base to replace
systemd with something less gross (and less cpu->battery hungry). Maybe work on getting the
kernel more vanilla to setup keeping it current instead of being tied to google. Maybe something

http://hwswbits.blogspot.com/2013/04/flash-on-picuntu-linux-arm.html
https://aur.archlinux.org/packages/chromium-pepper-flash-armv7h/
https://github.com/ylixir/
https://github.com/ylixir/kernel-shell-game
https://github.com/ylixir/grouper-kernel

else, who knows.

Anyhow, just wanted people to know what I was thinking, since the guide hasn’t been updated in
a while. Weigh in if you like.

NG Wireless configuration
pacman -S wpa_supplicant
cat > /etc/wpa_supplicant.conf
network={​
 ssid="SSID_NAME"​
 psk="bleahbleah"​
}​
<CTRL-D>
cat > /etc/systemd/system/network-wireless@.service
[Unit]​
Description=Wireless network connectivity (%i)​
Wants=network.target​
Before=network.target​
BindsTo=sys-subsystem-net-devices-%i.device​
After=sys-subsystem-net-devices-%i.device​
​
[Service]​
Type=oneshot​
RemainAfterExit=yes​
​
ExecStart=/usr/bin/ip link set dev %i up​
ExecStart=/usr/bin/wpa_supplicant -B -i %i -c /etc/wpa_supplicant.conf​
ExecStart=/usr/bin/dhcpcd %i​
​
ExecStop=/usr/bin/ip link set dev %i down​
​
[Install]​
WantedBy=multi-user.target
<CTRL-D>
pacman -S dhcpcd
pacman -S iproute2
systemctl enable network-wireless@wlan0.service
systemctl start network-wireless@wlan0.service

Changelog
2013-07-20

1.​ Added instructions for installing the platform tools on an arch host pc
2.​ Added references to wicd and network manager as alternatives to netctl

2013-10-20
1.​ Updated instructions to reflect new *-grouper.zip naming scheme for MultiROM files
2.​ Added instructions for updating the kernel to include kexec
3.​ Got bluetooth 90% working. Interface comes up and can find devices with scan. Can’t

get it to pair yet though.
2013-10-24

1.​ Got the bluetooth device to power up on boot by adding a udev rule. Unfortunately the
bluetooth daemon seems to be failing as it starts.

2013-10-28
1.​ My keyboard is pairing on boot now. Ugly ugly things to get it working, but it works.

2013-11-03
1.​ Updated the guide to get X working.

2013-11-04
1.​ Tweaked xorg.conf files to get kde and e17 working.
2.​ Added instructions to get Touchégg working to provide more tablety experience
3.​ Stubbed out getting the display manager going and a section for an on screen keyboard

2013-11-05
1.​ More xorg.conf tweaks. Also instructions for automatic login and onscreen keyboards.

2013-11-17
1.​ fixed typo in bluetooth section (Thanks Lord Socky)
2.​ tweaked the fastboot instructions to help people notice that they may need to use sudo

depending on how their box is setup (Thanks Сергей Глита)
3.​ Added a note about the MultiROM Manager in the app store (Thanks Lord Socky)
4.​ removed some redundant steps in the “Tweaking Touch” section (Thanks Сергей Глита)
5.​ slight rewording of setup for wifi (Thanks Сергей Глита)

2013-11-18
1.​ breakage with wifi passphrase obfuscation. Need to add \” to your key. Fixed instructions
2.​ clarified a citation (thanks Сергей Глита)

2013-11-24
1.​ Upgraded my Nexus to Kit Kat, thought it was a good time to update the guide to include

instructions for installing multirom from the android app. Thanks again for the tip Lord
Socky

2013-12-18
1.​ Fixed a “typo” with the Touchegg instructions. (Thanks Alex Fuhr)
2.​ Added instructions for connecting with a serial terminal in OS X. (Thanks Aiden Foxx)

2013-12-22
1.​ Tweaked bluetooth instructions to get bluez4 from AUR (Thanks Lord Socky)

	Installing and Configuring Arch Linux on your 2012 Nexus 7
	Introduction
	Why Arch Linux
	Why This Guide

	Preparation of the host computer and the Nexus
	Enable Android Debug Bridge (adb) on your Nexus
	Windows

	Setting up fastboot (and adb) on your computer
	Windows
	Mac OS X
	Linux

	Unlock the bootloader

	Installing MultiROM
	Installing a custom recovery
	Installing MultiROM from the Android App
	Installing SuperSU (root)
	Installing the MultiROM manager from the play store

	Installing MultiROM manually from the command line

	Installing the Arch Image
	Connecting to your Nexus
	Windows
	Linux
	Mac OS X

	Getting WiFi working
	Create a user and setup your passwords
	Install and configure sudo
	Install and configure SSH
	Setting up Bluetooth
	Setting up X (the windowing system)
	Onscreen keyboard
	Graphical Login
	Logging in without a keyboard
	On screen keyboard in LightDM
	Automatic login
	Login without password

	Tweaking touch
	Flash
	Kernel plans and other notes
	NG Wireless configuration
	Changelog

