The Guide for Tagging

Conferences often use tags on sessions, either to guide users in session selection or for
schedulers to avoid parallel offerings of sessions with overlapping audience interest.

The purpose of this document is to develop standards for tagging as used by technical
conferences, particularly C++ conferences, and to document the rationale for those standards.
Using this guide, different individuals should be able to read a session title and abstract and
each create a set of tags similar to that created by others.

Adoption

This document is the official tagging guide for C++ On Sea, C++Now, Core C++, and CppCon
and may have information specific to those conferences. This document is public so that it can
be used as a reference for any organization that wants to leverage it. Please contact the
maintainers if you'd like to have editing permissions and/or you’d like to have content specific to
your organization.

Purpose of Tags

The reason that conferences want to tag sessions is so that sessions can be grouped with other
sessions of overlapping audience and/or interest.

Describing a talk is the job of the session abstract, not the tags.

Tags should indicate the subject of the talk, not its presentation format. For example, “workshop”
or “overview” are not good tags. Someone interested in a particular workshop is not necessarily
interested in all workshops and someone looking for a basic introduction on a subject, may not
be interested in an introduction on every subject.

For these reasons, tags should be general in nature and focus on the subject of the talk. For
example, a tag such as “lock-free containers” might be a good description of a talk, but it is too
specific to be useful as a tag. A better tag is “concurrency,” because anyone interested in a
session on lock-free containers is likely to be interested in other sessions on concurrency, even
if they aren’t about lock-free data structures.


https://cpponsea.uk/
http://cppnow.org/
https://corecpp.org
https://cppcon.org

Value of Quality Tagging

If a conference schedules its sessions in such a way that no two sessions with any matching tag
are scheduled at the same time, and if the individual sessions are well tagged, the conference
experience is improved for attendees.

Essentially, each tag is a “mini-track.” Whether an attendee is most interested in “games,”
“concurrency,” or “metaprogramming,” that attendee can be assured that they can attend all the
sessions on whichever topic is their greatest interest, because no two will be offered in parallel.

Because deciding which sessions to attend is a tough decision for attendees, quality tagging
can have an important impact on the attendee experience.

Common Mistakes

The single biggest mistake made by session taggers is being too specific with the tags.
Guideline: Tag the broad subject area of the talk, not the narrow details.

The second biggest mistake is to tag information about the session, rather than the content of
the talk.

Guideline: Tag the content, not the format of the talk.

Style Guide

Rationale

In order to be effective, tags must match exactly. Software for grouping and/or scheduling may
not be aware that “data” and “date” have very different meanings, but “game” and “games” do
not. There is no particular way to argue, on first principles, why “game,” “games,” “game
development,” or “game programming” is the correct tag, but we do need to agree on the

spelling of specific tags or we defeat the whole purpose of tagging sessions.



General rules

In this section of the style guide, we’ll discuss general rules, some of which are arbitrary, but
which guide us toward agreeing on specific tags. Later in this document we’ll simply catalog
specific tags that are to be used or avoided.

Case

Tags should be in lowercase except where the tag is either a proper noun or an acronym. Even
some proper nouns may be in lowercase if that is how they are generally written, for example
“asm.js.” Note that languages start with a capital letter and JavaScript has an embedded capital
“S.” Examples:

as-if rule

Android

ARM

Bluetooth

C

C++17

contracts

DLLs

Java

Acronyms

Jargon and acronyms can be in-grouping and off-putting—hardly something a conference should
embrace. Although acronyms can save space and time when used properly, tags are generally
not the proper place for them. On the other hand, some acronyms are so well established that
attendees might be more likely to recognize the acronym than the spelled-out version.
In general, use acronyms only where users are more likely to recognize the acronym than the
spelled out phrase. Examples:

artificial intelligence not ai or Al

APls see “Plural” below

ARM not Advanced RISC Machines

CUDA

DLLs

entity-component system not ECS

general purpose GPUs not GPGPUs

high-performance computing not HPC

HTML

RISC not Reduced Instruction Set Computer

Visual C++ not VC++



Plural

In general, technical talks strive to be as detailed as they need to be, but attempt to be general
enough to cover as many cases as applicable. So, talks are more likely to talk about items
(plural) in general and not a single item.

In most cases, the plural form works better for tags, so to be as consistent as possible, we
pluralize nouns, except where called out otherwise. Examples:

abstractions

algorithms

architecture -- note the exception

atomics

best practices

concepts

dependencies

games

GPUs

Verb form

Technical talks sometimes describe how things are, but more commonly describe how to do
things. For that reason we prefer the verb form to the noun form in most cases. There are
exceptions. Examples:

benchmarking instead of benchmark or benchmarks

compiling instead of compiler or compilers

debugging

exception handling

interrupts not interrupting

mocking not mock objects

naming instead of names

teams not teaming

testing

Assumed words

Presenters at a technical conference are not here to talk about asynchronous dance, they are
here to talk about asynchronous programming. Probably half of the tags we use could end in
“programming,” but that is just noise. If “programming” (or “C++”) can be assumed, then leave it
off. Note that in some cases it does seem necessary for meaning. Examples:

tooling not “C++ tools” or “C++ tooling”

naming not “C++ naming”

concurrency not concurrent programming

event-driven not event-driven programming



functional not functional programming

generic programming note exception, “generic” is just too... well, generic
heterogeneous computing note exception

metaprogramming instead of template metaprogramming or TMP

Hyphenation

When a noun is used with another word to modify another noun, it is hyphenated. This applies
in many tagging situations. Examples:

best practices note: not hyphenated

event-driven

lock-free

object-oriented

Less specific

To avoid tags that may be overly detailed, we select tags that are less specific. Examples:
asynchronous instead of async I/O
atomics instead of atomic operations
Bluetooth instead of Bluetooth Low Energy
Clang/LLVM instead of Clang or LLVM
documentation instead of documentation tooling
testing instead of * testing
Unicode instead of UTF-8

Useless and Semi-Useless Tags

Some tags are either too common, too vague, or too overused to be meaningful for grouping or
scheduling sessions. Useless tags should not be used as they can break scheduling software.
Some tags describe characteristics of programming that are so ubiquitous that in some sense,
they could be applied to (almost) every talk, but do make some sense when applied to talks that
focus on that characteristic.

Examples of tags that either shouldn’t be used or should be used advisedly are:

C++: At a C++ conference, every session should be about C++ at some level. The
exception to this might be a session on the history of C++ or comparing other languages to C++.
Even then, suspect.

correctness: No talk is about how to write incorrect code (except as examples of fails),
so all talks are about correctness in some sense. But this tag does make sense for a talk on
proving, measuring, guaranteeing, or otherwise focusing on correctness.

coding: We are engineers. Coding is what we do. AlImost every session is about coding
in some sense.

designing, engineering, programming: See Coding.



performance: Performance is one of the most important features of C++ as a language
and it motivates much of what we do. Not all, but a clear majority of presentations will have
performance as, at least, a minor theme. If every session that touched on performance in some
way had this tag, it would be useless. But like “correctness,” performance can be meaningful if
its use is restricted to presentations that focus on performance itself, rather than just considering
techniques from a performance perspective. For example, presentations on benchmarking or
other performance measurements, performance testing, or talks in which performance is the
overriding theme and not just one criterion on which techniques or code is judged.

BoF, case study, introduction, lecture, lessons learned, overview, panel, tutorial,
workshop: Tags should reflect the content of the presentations, not their format. The
conference should not schedule two sessions on concurrency at the same time, but there is no
reason not to schedule two panels (on different topics) at the same time.

Note that conference management may wish to create a “tutorial track,” in which beginner
sessions are offered in series rather than parallel, but perhaps tagging is not the best approach
for this. Whether or not a particular session should be in such a track requires information about
the set of other offerings available and can’t be determined just by understanding the particular
offering. Tagging is something that should be determinable based only on the information
available about a particular session and not dependent on knowing about all other offerings.

Boost Libraries

See the Boost library naming rules for how Boost libraries names should be presented. In the
tagging context, Boost libraries should follow this pattern:

Boost.Asio

Boost.Beast

Boost.Python

Boost.Algorithm

Boost.Serialization

Contact

The email address for maintainers of this document is:

tagging@cppcon.org
If you'd like to be on this email list, please send mail to that address.

Specific Tags

These are some real-world cases that have come up, and the tags that were recommended.
Note that many decisions are subjective and so, may be reconsidered. Please share your
thoughts, either as a comment to this document or as an email to the maintainers (see Contact).


http://www.boost.org/development/requirements.html#Naming_consistency

The text before the = is the lowercase version of the proposed tag. The text after the = is the
recommended tag. When you see the same value on each side, that means that the value on
the right is specifying the correct upper/lowercase of the tag.

"as-if" rule = as-if rule
"as-if" = as-if rule
<random> = random
a = <do not use this tag>
aa = <do not use this tag>
abstract machine = abstract machine
abstraction = <do not use this tag>
abstractions = <do not use this tag>
accumulate = accumulate
acquisition = acquisition
actor model = actor model
address sanitizer = AddressSanitizer
address-sanitizer = AddressSanitizer
addresssanitizer = AddressSanitizer
ai = artificial intelligence
algorithm = algorithms
algorithms = algorithms
allocation = allocators
allocator = allocators
allocators = allocators
android = Android
anti pattern = anti-pattern
antipattern = anti-pattern
api design = design
api = APIs
apis = APlIs
apple = Apple
application programmer = application programming
application programming = application programming
archecture = architecture
archeture = architecture
arm = ARM
artificial-intelligence = artificial intelligence
as-if rule = as-if rule
as-if = as-if rule
asan = AddressSanitizer
asio = Boost.Asio
asm.js = asm.js



assert = assertions

assertion = assertions

assertions = assertions

asserts = assertions

ast = AST

async io = asynchronous

async programming = asynchronous

async = asynchronous

asynchronous events = asynchronous
asynchronous programming = asynchronous
asynchronous = asynchronous

asynchrony = asynchronous

atomic operations = atomics

atomic = atomics

atomics = atomics

automated testing = testing

automatic testing = testing

aws = AWS

backward compatibility = backward compatibility
backwards compatibility = backward compatibility
bde = Bloomberg Development Environment
behavior driven development = behavior-driven
behavior driven = behavior-driven
behavior-driven development = behavior-driven
behavior-driven = behavior-driven
benchmark = benchmarking

benchmark = benchmarking

benchmarking libraries = benchmarking
benchmarking = benchmarking

benchmarks = benchmarking

best practice = best practices

best practices = best practices

best-practice = best practices

best-practices = best practices

blaze = Blaze

ble = Bluetooth

blom = Boost Library Official Maintainer
bluetooth LE = Bluetooth

bluetooth low energy = Bluetooth
bluetooth-lowenergy = Bluetooth

bluetooth = Bluetooth

bof = <do not use this tag>

boost = Boost



boostache = Boostache
build = build systems
building = build systems
builds = build systems

¢ compatibility = C compatibility
c=>C

c# = C#

c++ amp = C++ AMP

c++ core guidelines = Core Guidelines
C++ libraries = libraries

C++ library = libraries

C++ name = naming

C++ names = naming

C++ naming = naming

C++ package manager = package manager
C++ standard = ISO C++
ct++ templates = templates
c++ tools = tooling

c++ = <do not use this tag>
c+t+11 = C++11

ct+14 = C++14

c+t+17 = C++17

c++20 = C++20

c++amp = C++ AMP
c++next = future standards
c++now = C++Now

case study = <do not use this tag>
catch = Catch

categories = category theory
celero = Celero

ci = continuous integration
civil time = time

clang = Clang/LLVM
clang-tidy = Clang/LLVM
clojure = Clojure

cloud = cloud

cmake = CMake

cms = CMS

co-array = Coarray

coach = coaching

coaches = coaching
coaching = coaching
coarray = Coarray



code = <do not use this tag>

code browsing = code comprehension
code comprehension = code comprehension
code generation = code generation

code generator = code generation

code health = code quality

code quality = code quality

code sharing = code sharing

code visualization = code comprehension
code-generation = code generation
coding = <do not use this tag>

com = COM

committee = I1ISO Committee

compilation = compiling

compile time = compile-time
compile-time = compile-time

compile = compiling

compiler = compiling

compilers = compiling

component = components

concept = concepts

concepts = concepts

conceptual = concepts

concurrency = concurrency

concurrent programming = concurrency
condition variable = concurrency
condition_variable = concurrency

const = const

constraint based programming = constraint-based
constraint based = constraint-based
constraint-based programming = constraint-based
constraint-based = constraint-based
containers = containers

continuous integration = continuous integration
contract = contracts

contracts = contracts

core guidelines = Core Guidelines
coroutine = coroutines

cpp = C++

cpp11 = C++11

cppl14 = C++14

cppl17 = C++17

cpp20 = C++20



cppcast = CppCast

cppcon = CppCon

cppnow = C++Now

cpu cache = CPUs

cpu caches = CPUs

cpu = CPUs

cpus = CPUs

cross platform = cross-platform
cross-platform = cross-platform

cuda = CUDA

custom allocator = allocators

custom allocators = allocators

data flow = dataflow

data oriented = data-oriented
data-flow = dataflow

data-oriented = data-oriented
dataflow = dataflow

dataoriented = data-oriented
debugger = debugging

debuggers = debugging

debugging = debugging

declarative programming = declarative
declarative = declarative
dependencies = dependencies
dependency injection = dependency injection
dependency management = dependencies
dependency = dependencies
deprecate = deprecation

deprecating = deprecation
deprecation = deprecation

design by contract = design-by-contract
design patterns = design patterns
design-by-contract = design-by-contract
design = <do not use this tag>
designs = <do not use this tag>
designing = <do not use this tag>
developer tools = tooling

development = <do not use this tag>
device drivers = device drivers
devops = DevOps

di = dependency injection

diffusion = diffusion

dijkstra = Dijkstra



distributed computing = distributed
distributed containers = distributed
distributed systems = distributed
distributed = distributed

distribution = distributed

dils = Dills

docs = documentation

documentation tool = documentation
documentation = documentation

domain specific language = domain specific language
dsl = domain specific language

dwarf = DWARF

ecs = entity-component system

edsl = domain specific language
education = education

engineering = <do not use this tag>
embedded domain specific language = domain specific language
embedded systems = embedded
embedded = embedded

emotional intelligence = emotional intelligence
emscripten = Emscripten

error = error handling

event based programming = event-driven
event driven programming = event-driven
event handling = event-driven

event processing = event-driven
event-based programming = event-driven
event-based = event-driven

event-driven programming = event-driven
event-handling = event-driven
event-processing = event-driven
exception handling = exception handling
exception safe code = exception handling
exception safe = exception handling
exception safety = exception handling
exception-handling = exception handling
exception-safe = exception handling
exception-safety = exception handling
exception = exception handling
exceptions = exception handling

fiber = fibers

fibers = fibers

fibre = fibers



fibres = fibers

file system = filesystems

file systems = filesystems

file-system = filesystems

file-systems = filesystems

filesystem = filesystems

filesystems = filesystems

finance = financial engineering

financial data = financial engineering
financial = financial engineering

fixed point = fixed-point

fixed-point = fixed-point

fixedpoint = fixed-point

format = formatting

formats = formatting

formatting = formatting

foss = open source

fpga = field-programmable gate array
functional paradigm = functional

functional programming = functional
functional-programming = functional
functional = functional

future = futures

futures = futures

game development = games

game programmers = games

game = games

games = games

gcec = GCC

gdb = GDB

general purpose gpus = general purpose GPUs
general scientific interface = General Scientific Interfaces
general scientific interfaces = General Scientific Interfaces
general-purpose gpus = general purpose GPUs
general = <do not use this tag>

generic lambda = lambdas

generic programming = generic programming
generic-programming = generic programming
generics = generic programming

gpgpu = general purpose GPUs

gpgpus = general purpose GPUs

gpu = GPUs

gpus = GPUs



graph = graphs

graphic = graphics

graphics = graphics

graphs = graphs

gsi = General Scientific Interfaces

gui library = GUI

gui programming = GUI

gui = GUI

hash table = hashing

hash-table = hashing

hash = hashing

hashes = hashing

hashing = hashing

hashtable = hashing

heterogeneous computing = heterogeneous computing
heterogeneous programming = heterogeneous computing
heterogeneous-computing = heterogeneous computing
heterogeneous-programming = heterogeneous computing
heterogeneous = heterogeneous computing

hft = financial engineering

high performance computing = high performance computing
high-performance computing = high performance computing
higher level APl = APIs

higher level APls = APIs

hippomocks = Hippomocks

hoare = Hoare

hpc = high performance computing

hpx = HPX

html = HTML

http = HTTP

human factors = human factors

hypervisor = hypervisor

ide = IDE

image analysis = image analysis

image recognition = image analysis

image-analysis = image analysis

image-recognition = image analysis

imagerecognition = image analysis

immutability = immutable

immutable = immutable

in depth = <do not use this tag>

in-depth = <do not use this tag>

include = includes



includeos = IncludeOS

includes = includes

infrastructure = <do not use this tag>
inherit = inheritance

inheritance = inheritance

inherits = inheritance

interactive software = interactive
interactive = interactive
interactivity = interactive

internet of things = Internet of Things
interrupt handling = interrupts
interrupt = interrupts

interrupts = interrupts

introduction = <do not use this tag>
introspection = reflection

io=1/0

ios = iOS

iostreams = iostreams

iot = Internet of Things

iso c++ = ISO C++

isr = interrupt service routine
itanium abi = Itanium ABI
itanium-abi = Itanium ABI
itaniumabi = Itanium ABI

java native interface = Java Native Interface
javascript = JavaScript

jenkins = Jenkins

jni = Java Native Interface

json = JSON

kernel mode = kernel

kernel-mode = kernel

kernel = kernel

kernelmode = kernel

lambda = lambdas

lambdas = lambdas

language design = languages
language designs = languages
language = languages

languages design = languages
languages designs = languages
languages evolution = languages
languages mechanics = languages
languages = languages



large code base = large-scale

large scale = large-scale

large scale architecture = large-scale
large scale development = large-scale
large scale software development = large-scale
large-scale = large-scale

large-scale architecture = large-scale
large-scale development = large-scale
large-scale software development = large-scale
latency = latency

launder = launder

launder() = launder

lecture = <do not use this tag>

legacy = legacy

legacy code base = legacy

legacy software = legacy

learning = education

lessons learned = <do not use this tag>
libclang = Clang/LLVM

libraries = libraries

library = libraries

library design = libraries

library development = libraries

library building = libraries

libtooling = Clang/LLVM

license = licenses

licenses = licenses

licensing = licenses

link = linking

link time = linking

linkage = linking

linker = linking

linking = linking

linktime = linking

linux = Linux

linux = Linux

literal = literals

literals = literals

literal type = literals

literal types = literals

lldb = Clang/LLVM

llvm = Clang/LLVM

llvm/clang = Clang/LLVM



load balancing = load balancing
locality = locality

lock free programming = lock-free
lock free = lock-free

lock-free programming = lock-free
lock-free = lock-free

locking = lock-free

lockless programming = lock-free
lockless readers = lock-free
lockless = lock-free

logging = logging

logic = logic

loops = loops

low latency = latency

low latency programming = latency
low level = low level

low level programming = low level
low-latency = latency

low-latency programming = latency
low-level = low level

low-level programming = low level
machine learning = machine learning
machinelearning = machine learning
maintainability = maintainability
maintanence = maintainability
maintenance = maintainability
manyrepos = manyrepos
measurement = measuring
measurements = measuring
measuring = measuring

memory = memory

memory management = memory
memory model = memory
mersenne twister = random
messaging = messaging

message = messaging

message broker = messaging
message passing = messaging
messages = messaging

meta = meta

meta classes = metaclasses
metaclasses = metaclasses
meta-programming = metaprogramming



metaprogramming = metaprogramming
mock objects = mocking

Mock Objects = mocking

mocking = mocking

modern = modern C++

modern c++ = modern C++

modern code = modern C++
modernization = modern C++
modernize = modern C++

modular = modularity

modular design = modularity

modular development = modularity
modularity = modularity

modularization guidelines = modularity
modules = modules

monorepo = monorepo

move semantics = move semantics

mpi = messaging

mpl = metaprogramming

mqtt = messaging

msm = Boost.MetaStateMachine
multi-core = concurrency

multi-threading = concurrency
multi-device development = multi-device development
multi-dimensional = multidimensional
multi-language = multi-language
multi-method = multi-method
multi-precision = multiprecision
multi-precision arithmetic = multiprecision
multi-precision math = multiprecision
multicore = concurrency

multithreading = concurrency
multidimensional = multidimensional
multidimensional arrays = multidimensional
multidimensional data = multidimensional
multiprecision = multiprecision
multiprecision arithmetic = multiprecision
multiprecision math = multiprecision
mutex = concurrency

name = naming

names = naming

naming = naming

nasal demons = undefined behavior



network = networking

networking = networking

networking ts = Networking TS
networkingts = Networking TS
networks = networking

neural network = neural networks
neural networks = neural networks

next generation = <do not use this tag>
next generations = <do not use this tag>
new technologies = <do not use this tag>
new technology = <do not use this tag>
node.js = node.js

non-blocking = concurrency
nonblocking = concurrency

nosql = NoSQL

nuget = NuGet

numerics = numerics

nvidia = Nvidia

object = objects

object model = objects

object size = objects

objects = objects

object oriented design = object-oriented
object oriented programming = object-oriented
object oriented = object-oriented
object-oriented design = object-oriented
object-oriented programming = object-oriented
object-oriented = object-oriented
observer = observer

OOP = object-oriented

open source = open source

opencl = OpenCL

openmp = OpenMP

operating system = operating systems
operating systems = operating systems
operator = operators

operators = operators

optimization = optimizations
optimizations = optimizations

optional = optional

orm = object-relational mapping
overview = <do not use this tag>
overload = overloading



overloading = overloading

overloads = overloading

ownership = ownership

package = package management

package dependency management = package management
package management = package management
package dependency manager = package management
package manager = package management
package repository = package management
packaging = package management

panel = <do not use this tag>

parsing = parsing

parallel algorithms = concurrency

parallel programming = concurrency

parallel stl = Parallel STL

parallel = concurrency

parallelism = concurrency

parallelism ts = Parallelism TS

parallelismts = Parallelism TS

parallelization = concurrency

parallelstl = Parallel STL

past = <do not use this tag>

pattern matching = pattern matching

pattern = <do not use this tag>

patterns = <do not use this tag>

perfect forwarding = perfect forwarding
performance analysis = performance
performance monitoring = performance
performance = performance

persistence = persistent data types
persistent data = persistent data types
persistent data types = persistent data types
persistent data structures = persistent data types
plenary = <do not use this tag>

policy based class design = policy-based
policy based design = policy-based
policy-based class design = policy-based
policy-based design = policy-based
policy-based = policy-based

postmodern C++ = postmodern

postmodern = postmodern

postmodernism = postmodern

preprocessor = preprocessor



present = <do not use this tag>
program = <do not use this tag>
program design = <do not use this tag>
programming = <do not use this tag>
programming by contract = contracts
programming-by-contract = contracts
project dependency manager = package management
property-based testing = testing
protocol = protocols

protocols = protocols

puzzle = <do not use this tag>

puzzles = <do not use this tag>

python = Python

question = <do not use this tag>
questions = <do not use this tag>

gt = Qt

raii = RAll

radix sort = radix sort

random = random

random engine = random

random engines = random

random number = random

random numbers = random

random number toolkit = random
ranges = ranges

rcu = concurrency

readability = readability
read-copy-update = concurrency
reader-writer lock = concurrency

real time = <do not use this tag>

real time graphics = real-time graphics
real-time graphics = real-time graphics
reference = references

references = references

reference semantics = reference semantics
reference-semantics = reference semantics
reflection = reflection

regular types = generic programming
remote procedure calls = remote procedure calls
requirements = requirements
requirements in code = requirements
resource = <do not use this tag>
resources = <do not use this tag>



resumable = resumables
resumables = resumables
resumable expressions = resumables
resumable functions = resumables
rest = REST

RISC = RISC

RISC-V = RISC

robot = robotics

robotics = robotics

robots = robotics

robustness = robustness

rocket = rocket science

rocket science = rocket science
rockets = rocket science
rocketry = rocket science

rpc = remote procedure calls

rtc = time

rule of zero = rule of zero
runtime reflection = reflection
rust = Rust

safe types = safe types

safety = type safety

safety systems = safety systems
sanitizers = sanitizers

sanity = <do not use this tag>
science = scientific computing
scientific computing = scientific computing
scons = SCons

scope = <do not use this tag>
scripting = scripting

scripting languages = scripting
sfinae = SFINAE

sg14 = SG14

sg 14 = SG14

sg-14 = SG14

si unit = Sl units

si units = Sl units

simd = SIMD

simplicity = simplicity

simplify = simplicity

software = <do not use this tag>
software engineering = software engineering
sound = audio



spmd = concurrency

sgl = SQL

stl = STL

stacktrace = debugging
stacktraces = debugging

static = <do not use this tag>
static analysis = static analysis
static analysis tool = static analysis
static analysis tools = static analysis
study = <do not use this tag>

swift = Swift

sycl = OpenCL

synchronization = concurrency

tcp = TCP

teaching = education

team = teams

teams = teams

technique = <do not use this tag>
techniques = <do not use this tag>
template = templates

template specialization = templates
templates = templates

template metaprogramming = metaprogramming
test = testing

testing = testing

tests = testing

time zone = time

time = time

tmp = metaprogramming

tooling = tooling

tools = tooling

trading = financial engineering
training = education

transaction = transactions
transactions = transactions
transactional memory = transactional memory
tutorial = <do not use this tag>
tvos = tvOS

type = <do not use this tag>

type deduction = type deduction
type erasure = type erasure

type safety = type safety

types = <do not use this tag>



ub = undefined behavior

ucs 2 = Unicode

ucs 4 = Unicode

ucs-2 = Unicode

ucs-4 = Unicode

ucs2 = Unicode

ucs4 = Unicode

uftrace = uftrace

ui = user interface

undefined behavior = undefined behavior
unicode = Unicode

unified call syntax = unified call syntax
unikernel = unikernels
unikernal = unikernels
unikernals = unikernels

unit test = testing

unit testing = testing
unit-testing = testing

units = units

unittest = testing

unreal engine = Unreal Engine
user interface = user interface
utf 16 = Unicode

utf 32 = Unicode

utf 8 = Unicode

utf-16 = Unicode

utf-32 = Unicode

utf-8 = Unicode

utf16 = Unicode

utf32 = Unicode

utf8 = Unicode

utility = <do not use this tag>
valgrind = Valgrind

VC++ = Visual Studio

vepkg = Vepkg

vector = vector

vectors = vector

versioning = versioning
visual c++ = Visual C++
visual studio = Visual Studio
wave = preprocessor

web services = web services
webgl = WebGL



websocket = WebSockets

websockets = WebSockets

windbg = WinDbg

windows = Windows

windows runtime = Windows

workshop = <do not use this tag>

zero cost abstractions = zero-cost abstractions
zero-cost abstractions = zero-cost abstractions
zero overhead libraries = zero-overhead libraries
zero-overhead libraries = zero-overhead libraries
zmq = zmq



	The Guide for Tagging 
	Adoption 
	Purpose of Tags 
	Value of Quality Tagging 
	Common Mistakes 
	Style Guide 
	Rationale 
	General rules 
	Case 
	Acronyms 
	Plural 
	Verb form 
	Assumed words 
	Hyphenation 
	Less specific 


	Useless and Semi-Useless Tags 
	Boost Libraries 
	Contact 
	Specific Tags 

