FER

TEGoogletft HiNavigation DrawerZ &I, android 73R4 I AR Z (# FADrawerfI R, (BR2IX LR AFEREK
FATRMMRE, BIXEEFRE, HEBM= A R HERIX LR A2 B X5

. action bar2&EE
2. fhgXis
3. EREEERTAR@mANAIFLE

UK

the verge
HE VERGE /Ews (
STORIES REVIEWS FEATURES

/
. .. E
Samsung\l.fnvellmg new Android
and Windows devices on June

20th

BY AARON SOUPPOURIS

®#000000

MOBILE

Foxconn joining Firefox OS alliance
as it tries té compensgte for Apple
slowdown o

Bryan Bishop | 47 Minutes Ago

_{
34 UPDATES FOLLOW vV
C— Xbox One: Microsoft's new console,
Kinect, and a big bet on TV
UPDATE 3 Hours Ago

Microsoft may award achievements for
watching TV and ads by monitoring you with

action bar@EE
EFAh A
JLFfrE R Ea A

NEWS
SECTIONS
B MEDIA
W FOLLOWING

@ FORUMS

£ 106 0uT

(@ ABOUT THE VERGE

BY AARON S(

MOBILE

34 UPDATES

Google+

09:10

(28] All Circles ~
4 =/

{3 Adam Powell

Over the long weekend | picked up Metro: Last Light.
It's got elements of Bioshock Infinite's linear yet
NPC-driven action, Dishonored's encouragement of...

Metro: Last Light on Steam

K3 store.steampowered.com

tEw . om
E e
-~ ﬂlﬂ\-

Peter Nolen Atmosphere is good, but the shooting is
alittle clunky (I hear LL is better) and the pc version...

@ The Verge

action barA~ElE
B A AR HHE (AN IX 2Android EE BREEHM— NN A)
3. HIFEFREEAEETE e

Q Search

Home All Circles

People @ Adam Pc

Profile

Over the long week
It's got elements of
Photos NPC-driven action,

Metro: Last Lig

R store.steampow

Communities

Locations

Hangouts
+7 -

Events Peter Nolen Atmos)

a little clunky (I hea

@ The Verg

Messenger

Evernote Food

€I Explore Recipes

L 0
Bandiu

Orturice + Win a i/ear's supply of eggs!

=

— el

action barEE
. BT GEI K R
3. FTEREARREMEE SinihE

@ Evernote Food

Closifig Doors, Ghipotle Shrimp Tdcos

'} “Turntable Kitchen

.
| My Cookbook

) GO TO RECENTLY VIEWED

#sEAINavigation Drawer %

08:51

Racer Listen Now
My Library
Playlists
Radio

damien rice 0
Explore
Audio 100- Mozart.. 0
Racer
. Giorgio Moroder ’

g | =

1. action barEE - & RREREMLFEEZIE
2. BEBRATHERE S
3. LFERrEREEREY

IEX

DrawerLayout and the associated Android Design guidelines made their debut in the Google Shopper and
Google Earth apps before Google 1/0O. At the conference+Roman Nurik and +Nick Butcher gave a great
talk introducing them to engineers while explaining other Ul patterns
(https://developers.google.com/events/io/sessions/326204977) and +Richard Fulcher and +Jens Nagel
gave another on related structural patterns as well.
(https://developers.google.com/events/io/sessions/326301704) As an adaptation of a long-standing
pattern from the developer community, we had a big task ahead of us in standardizing a pattern for the
sliding drawers that users have come to know and love while still meeting some very general
requirements from the rest of the app ecosystem.

#£Google I/0X£ 2 |, DrawLayoutF1E 48 % BJAndroidi& it e RaFt B R H Bl £ Google ShopperflGoogle
Earth#1, Roman Nurik#INick ButcherfE A% L RIFHUIFENAL TIRITA), FHEARE T EbUIE(
https://developers.google.com/events/io/sessions/326204977), 3 BRichard FulcherflJens Nageltt £
B T x Mg (https://developers.google.com/events/io/sessions/326301704) , E N — N EF LK E#t
BOKHFENKESER, ERAEC— AP FRBNF EEZNES X MBEER 251, N5 - 1TREME
%, BRBREANEFTERENAESRE D HMM—LIFEENNER,

We started from both low-level details and high-level conceptual structure at once. Everyone uses nav
drawers just a little bit differently and those differences have implications for the rest of the app’s

navigation hierarchy. After a while we distilled down to a set of goals that we wanted to achieve:

HMNREAMERATNEERSENEF. BT AEASHBEREHE —L/IVINIRRE, MXERR LN MA
HitISMBRRTET —Lm, AE, BIRGH-AHNFEZXRIMER:

1) Consistency across apps. This was the whole reason we started on the project; we wanted to set forth
some common patterns that developers could agree on so that users would find these constructs instantly
recognizable from app to app. It also couldn’t deviate too radically from existing navigation designs. Apps
using a navigation drawer should still conform to general navigation principles like Up navigation,
placement of universal items such as Settings and Help and so forth.

NENAM—EE SREMNEIBEMNNEMEERR,; #MNAHAZRE—LEHFARENTHEERX, KA
PIIZFER RIS APHALX LELEN, Eth T T TRENGHUSMIRIT. ERSMERMNALIKB
FE—MSHRD, it m@L” (Up navigation) #R4, fMRE", “FEEHHBMAIE,

2) Suitability for many different apps. The most common version of navigation drawers in the wild

bulldozes the main content of a window to one side to reveal the drawer. This had some issues, even

https://plus.google.com/113735310430199015092
https://plus.google.com/118292708268361843293
https://developers.google.com/events/io/sessions/326204977
https://plus.google.com/104617628550655857095
https://plus.google.com/106113446568642360775
https://developers.google.com/events/io/sessions/326301704
https://plus.google.com/113735310430199015092
https://plus.google.com/118292708268361843293
https://developers.google.com/events/io/sessions/326204977
https://plus.google.com/104617628550655857095
https://plus.google.com/106113446568642360775
https://developers.google.com/events/io/sessions/326301704

though in some apps it can look flashy and feel satisfying.

2) FRIN A Z REERN T, &RE BN S MMERARZFERREMN—LBI R L RkELHE, XA
R, BMEE— LN AR EELEREN, BEBREE,

3) Discoverability. A major navigation pattern that users will need to rely on needs permanent on-screen

cues and affordances so that users don’t miss large parts of an app’s functionality.

3) LRI, —MRBEAF KB EIESHMEN, ARELFERAL RHRTHERR, SRS R2ET
— "N FRBIKRER S DIRE.

4) Deep drawers. The more we kept playing with the idea of navigation drawers, the more we liked the
idea of having the option of the drawer at lower levels of the app’s hierarchy as a shortcut to get around.
Leading into Android 4.x we did a lot of work to clarify the navigation hierarchy of apps and move away
from the “big ball of activities” unstructured flows of 2.x and earlier, but the consequence of this was that
getting from one leaf node of an app’s hierarchy to another now meant more steps along the way.

4)FES M. BITHEARZSMMENEE, BNEFERSMBHERRREERREAD, N#EA
Android4 xBHUES, BHAEEBNANSMER L€ T ALK, R T Android2. x8l E B iR A fI3EL #1E
T BRI HMMERREMNAEN ERMT AR — 1T RNEEEERESHNIR,

5) Ease of development. The best pattern can be completely defeated if it's too complicated for
developers to implement. Whatever we did had to be dead simple to add to apps, ideally with a pre-baked
implementation in the Android support library.

5)ZFHE. RIFHIRERAISENFRLFERXMBERS T M. BATFTHMEI—UIER LI R % # 2 hafiF
MEIRAFE, FiFREFAndroidZH#E LRI,

6) Multiple screen size support. Developing for multiple screen sizes and great tablet support is
something we’d like to continue improving. As we explored different drawer options, we couldn’t help but
notice that drawers held a lot in common with the left pane of multi-pane tablet layouts. Maybe there was
something we could use there.

6) XFLHRTRR. N EMERERTHFRASIFRMERERNFERFEIEH N, BHNERT R HHE L
mEt, FALERRHE Mmulti-pane EARTRE P EMpane BRE HRE =, thHH LA LUESHIHA,

7) It had to feel awesome. The best Ul is one you find yourself idly fidgeting with.

7) AR E RS (REWRHEM A S MR E R R FH.

One of the first decisions we made around navigation drawers was to leave the action bar fixed and we

published this stipulation in the Design Guide very early. This was for a couple of reasons.

NFSAmE, B MBS — N REMZFaction barElE, FEHMNFXIMAERBEARMENRITHERAF
T XEHFHLNER,

First, the action bar is part of what we call the window decor. A window’s decor is extra decoration around
the window’s primary content that is owned and controlled by the framework. Nothing actually guarantees
than an app can walk up the view hierarchy and see something consistent from version to version or that
inserting a new, arbitrary parent view above the action bar in order to move it and the rest of the content
around is going to actually work without crashing on later platform versions.

B Jt, action bar@window decorfd—&B43 . decor BE O FEANRABME S, E=Fframeworkfd—E85, F
HframeworkiZHill, S5Fr £, ZE— N ARLUSEIFEEMEESR, FactionbariFil— N EFEIR viewREINTE
#zhactionbarfiH & EX A LIEE TEHRIEEFRARE DTSR,

Second, the action bar forms an important structural anchor for the activity. It's always contextually
relevant and provides a well-known place for navigation and actions. Making it inaccessible when a
navigation drawer is open would be counterproductive in many situations and make the drawer feel more
modal than it needs to. Apps that do this often end up creating secondary bars for actions within their

drawers to compensate.

%, action barFactivitytiflk T — M EBEMEHHE R ERRESARHEXM, FENSMFRERBT —MH
ANBEBIGIE . Ynavigation drawerf 3T S I i&# Aaction barfy, HEAERZE R THIAEE, mAFE
drawer@&3t BN AL . XFEMAON A— R ESEEMMmE B0l E— A TFIEEMN ZREZL/ERIME,

We always prefer direct manipulation when it comes to touch. If the main window content moves to reveal
a drawer the user should always be able to grab it and drag it to one side to make the drawer visible. In

the general case this has issues with the window’s gesture space.

L MEET LU RSN, RIBEEREREF MRETEONBBIREL — MR, A A8 KHE
B REHE TR, TEENEST, IHMESEEOFHEEREAHE,

A navigation drawer that is revealed by swiping the main activity content to one side means the horizontal
swipe gesture space is now occupied. In effect, a navigation drawer in this style would mean you couldn’t
have ViewPagers, swipe to dismiss, MapViews, WebViews, etc. in the main content without a conflict.

That’s awfully limiting for a major Ul pattern.

B FFmain activity NERE—0 /B30 KB HSHHE RAKTEEIFEREREAT . HLHUME, MRS
i XX, BERERFR TR ENE R EAViewPagers, /&3 LIRRE, hEHEEE,
MASIZAE, XN FASHXERXBE— T EaHIRS,

An overlay drawer with an edge swipe solved many of our requirements all at once. It retains direct
manipulation and feels particularly nice on Nexus 4’s curved glass edges. It keeps the gesture space
open over the main window content. It can be implemented as a simple ViewGroup that you can drop in
at the top level of your layout with one view becoming the drawer itself.
android.support.v4.widget.DrawerLayout was born and met our goals of consistency, suitability across

diverse apps and ease of development.

— T RTUETFHHEBESEXHE —TFRBERT KESHFER. ERBET BEEE, FEENexus 489Z R
BOLE ERIUHAAEE, ENTEORNBTRE T F B X, {RA] LITEIRARATIEKE— 1 8ViewGroup,
REFEPH—PviewZE RiE, SKHEIEkER &, android.support.v4.widget.DrawerLayoul 4 T, 3+ HiA
BT SRR ENUNSTFRABR.

The next issue to tackle was discoverability. Thanks to work already done by the developer community
users were already accustomed to reading a three horizontal line icon at the left side of the action bar as
a menu/drawer button. (During user testing one user referred to it as “the hamburger” and the name
stuck.) We knew this approach was a sure thing fori discoverability but it didn’t quite sit right. Replacing

the app icon meant potentially losing a big part of the app’s identity.

T—TFERRNAEAZ AR, SWRLEFREHFPHRAFS B IE ELIRF=SKTELHE
PRifFEaction barZEBF N — 1 S E/HhEZE. FERFNELES, —AFFEANZE-TXER) H
MNEEX MR ETLGR T AR, BE—RTXH, BREAEGRERESRIKEN AR,

 Listen Now
[ON DEVICE ‘

Racer
Giorgio Moroder

The apps that made the full-size three-line button icon in the upper left popular are themselves popular
apps with strong branding throughout their Ul. For other apps, using that full-size hamburger icon in place
of the app’s own icon on the action bar meant losing a glanceable identifying characteristic. It ran the risk

MLRATIHEAN SR LA REE L AN A AR LLEE B SHUIER KRB MR, X3 FEithag N
A, EA2R-PXETRF RN Aaction bar L BEHERERELAEBSHIRAHE. ERXEXZNAT
FEEE FARLL, BATRER A LT ERN ERRWIXESER, RABEIBER,

08:51

Racer

E—hIVRE CEUIAMN ER) MERBRIERAL, MRFARTERESFRA LER—&, AFEREAN
RSP RES 2R, TAAIERITE AR R T —ERIZHARAR, SEtER, HMFMREERRED
SENAIF AR A THEXMRURETAI P, ERUMEN —NMEBFEMET, ERRMNMEXZTH
E"JO

damien rice 0 0

Dlder Chests

tskimo

Racer ’
Giorgio Moroder

pge) - =]

BN BEAMKIBEFRMNESEHEXARERXEN FTEMERERT, E2HIEE TEE. 1F2EBGmailfi
A, t1EXRTER L@ fragments}31 B 5 R F01U B ¥ 1EviewH HEE — 2, (B 2HREMIviewsTE FH%
& FHRTEFHSME R,

Youtbe EZER T NAFENHERALEXHIER, FERIMGIFELT, FiHangouts B —LERLIFHENE, 5
Bl Z4b ENexus7 £ B R THIFER 1 HFEEER A BB A E RERBHIREINR, WRHEFERER
KRN, MERH KHFER LFHIRMFEFRFHFEBEREE,

The further we looked at these use cases the more clear it became that DrawerLayout and what
Hangouts wanted were distinct. The key difference was that our navigation drawer pattern was
independent of screen size; in cases where we wanted a nav drawer we wanted it tucked away until
summoned. A larger screen didn’t mean that there was some responsive design inflection point where the
drawer became permanently visible.

HBH —TEXLERG], BERHINREME XA EFIHangouts B EMHREFR—HH, XBMARE R7E
FREMNVSMBBRBEXZMHITRERTH, ERNFLAESMHBENERFE, BNFZ2HERBLE,
EHEBRMFHET R, KMBEBHTEREE —LMNXMRITHS, inifE kAR,

android.support.v4.widget.SlidingPaneLayout now formed the basis for the new Hangouts app’s Ul. We
kept the bulldozing behavior here even though we rejected it for DrawerLayout. Its use case is more
narrow than nav drawers and it wasn’t designed to be as strong of a prescription for this specific use
case, merely another tool in the box. We were willing to concede the potential for gesture space conflict
and leave that to apps choosing to use it.

android.support.v4.widget.SlidingPaneLayoutZl 748 A T HangoutsFIU I E Bt . B ATA1IE4E 751X B 3 Al

BRXAR, BEHENSHEBEE =, ENRAGILLS MR MAGIERRE, BN ERNIX— %A GIR T, fr
LEFATREERA—MEEAMLA, MANREFFIHE—INIE, HINKAZXEFEEBENFRRER
180H3E, 3 BLIHX AR BR B4R AR LIk R IX B A R

This had some other implications for Up navigation. While we were settling on using the upper left corner
as a toggle with a different glyph for navigation drawers using DrawerLayout, SlidingPanelLayout was
becoming a different story. SPL’s primary purpose was fitting a large-screen layout onto a smaller screen.
You could build something equivalent using fragments and list/detail activities, SlidingPaneLayout was
just meant to give that flow a more engaging interaction.

X B X F R LS (Up navigation) B T —L#00E Lo HFEAEADrawerLayoutdt, HiEEZ LAFERT —
M AEHERERT RRX 22— SHHEMFFX"MEE, SlidingPaneLayoutHIBFIARE,
SlidingPaneLayout M#H R 2/ — M RKEBARENE/NER L X, (R LMEAZMragmentsFIFIR/F1E
activitiesSE1S ZIRBE IR, SlidingPaneLayoutR ZEMKBAERR—TEMERAMRKE,

With that in mind there was only one answer. SlidingPanelLayout would use normal Up navigation as if it
were conceptually two different activities in the navigation hierarchy. The Up button should travel up from
the detail pane to the item list, opening the pane, but never the reverse.

EZRIZX—RRE—NEE, SlidingPaneLayoutfE AEMHMIUp S, B LB ESHEEARTTEM
activity, UpiRHl 15|15 MiFtEpaneE|TT B 5K, $TFpane, A=K,

Making it easier and more satisfying for developers to handle multiple screen sizes: accomplished. The
same code can be used on any device and SlidingPanelLayout will automatically lock open when enough
horizontal space is available to fit both panes side by side.

UEFRAEEMERIAEMLEZHERR T T, HRMABAIUEERMMRE LEH, #FEEKELE
BB HMZERIRTEANFHEMpane, SlidingPaneLayout 3% B313#TH.

We came back to the discoverable affordance for nav drawers. In an effort to make it more visible the

BMNERRASMEEMAIRIE, N TIUERRSEAI, RITEMET KK, AHERBERFactivity®
RREHZ T —R, BRXLEAEHEERT, ENERETEIRHMESNEL, ELEANREREBREDLI
MiLEE, FHEREFRLS, XHEERATUER L, FEEAL,

08:51

Racer

XMRITE A LA E, H/NERUE|LDS, EMEBHIE—N/NIE, KRERUEARERTL, XA
RO EANAE TR B #): Bt S I E R R/ NER R B S MERENE (AE) BANE, mEtaf/NER
MAERAM(E)E . XEERMEETIFXFE/ZAMTH Rt BR (E@LERENORKRES) HEEmE
R REE, B3)BHRRELSY, android.support.v4.app.ActionBarDrawerToggle s = FA 3 X Bk
DrawerLayoutFliX #3 B /Y,

08:51

Racer

Listen Now
ON DEVICE ‘

Listen Now

Our final nod to discoverability was to optionally open the navigation drawer on first launch of the app.
While this guarantees that the user will know it’s there, it doesn’t mean that they will know how to
summon it in the future. Apps that take this option should record the first time that the user successfully
opens the drawer on their own and stop showing it open on startup.

EMNXTFARIMMRE-—REEE—REINARPITIHEE ., 2AXEFTLURIERS MEHREERE,
BRFFEREMIEUFNEATHEE. SAFE-XBCHITHERE, SAFELXTXR RAEEUE
B FBEREE,

At this point we were happy with the outcome. There were certainly compromises involved but we were
confident that this pattern was universal enough to publish. Both DrawerLayout and SlidingPaneLayout
felt good for their respective use cases. Only one issue remained, and it was one we had many
discussions about through the entire process. That issue was the one of deep drawers - nav drawers at
levels of an app’s navigation hierarchy deeper than the root.

BFEBEFOLAELTATHRRE. AAREZM, BRENERFEEEELEAHXNEBBANREER,
DrawerLayout #1SlidingPaneLayout X Ft i 1R FAHIE 2% ki, RE— BB, MX M REIHANE
BAYREGR WK, BAESERESM - LR SMBEMN AR RS,

We were confident in overloading the left side action bar button for a drawer toggle at the root of an app’s
hierarchy because there was no potential for ambiguity. However at deeper levels of the navigation
hierarchy this wasn’t an option; that space was already reserved for Up. Removing Up from deeper
activities with a drawer would mean invalidating a previous pattern and moving back toward the big ball of
activities anti-pattern that we’ve worked hard to overcome for the last year or so. So we kept both.

HAEE BIEHIT N ATK Maction barEiB RN BT X, ENXHMIFRABEMRL . BEEN
AMERRAEE, XFZREA; BN BeHRE ELWER KA LR (Up) . IR FEZRZE R Hactivities #IE
HEEARIEMBERAHEFEEREFEENS A TE-—EMEIENRERKER. FIURINRBTHRE.

Hey guys, | posted a few mock ups of a Facebook
redesign a few days ago (http://goo.gl/xdPtX) and
got some surprisingly positive feedback :P

Facebook Android Mockup #2

8 photos

BT T

pge) - =]

Location: Communities > Android Design

HEBEEZRENSMESHMREAOFETRATHM, XLEEE—RBENATEMRESSM, EthTL2E,
AR XLEEERYR, SMREFEZIFEEEEN, FrimEILEERActionBarDrawerToggle-style, 7E R
PR EARALE, ARG LIF—# S oRm R4 (Up),

M LR R FATREE THE, BEEEFH—MAXTLITHFSMME - L& BA, T2 L HEERER

SEEHAEXER, AN —THAPBLHTLBS T RER LIZERZARE R, ARERSAIURT /NG
REFEHE. FERATAFAEAFREBESLEEARTHEERZ—MREFR,

Drawer-based navigation is always absolute. It doesn’t create navigation history per se, it instead
behaves like navigation from a home screen widget or notification. That is, it involves replacing the task
stack with TaskStackBuilder or similar. It represents a hard context switch to another part of the app. Of
course if an app only uses it to switch top-level views and never deep links you can implement this with a
simple FragmentTransaction.

HESAMIBAREXN M, X FERMREEHFFOER LR, EMITHELM— S EIEEE BN AR
F. Eff FATaskStackBuilder 2 KR FEE R T EF Hik, ERBITUIREINAEMIEMRER, HAME—
TRNARAEXRENERE ZE YR AZETMAFER R, {RAFragmentTransactionzh o] LR 5 Hufig
%,

| hope you've enjoyed this short series. Creating patterns for the Android Design guide always carries
more constraints than creating a Ul for a single app since they have to meet more general use cases, but
the reward is more consistent behavior across the ecosystem that users can immediately recognize and
understand in your app from experience with others.

HAELMAEZZXEE R, NAndroidiR IHER A EREREAXRBHHIERE RS TFRBNENN AL
BVl ENFEEXNELEERMAR, BUKRZ, A/ BT MEME A PIRGHE K B UREIR 5 FH EEZ R
BRI, XFEHITAREENES RS,

[R3:
53 B Adam Powell#Google+ posts
e Part1
e Part2
e Part3
e Part4

https://plus.google.com/u/0/+AdamWPowell/about
https://plus.google.com/u/0/107708120842840792570/posts/2zi4DXd3jkm
https://plus.google.com/u/0/107708120842840792570/posts/VdgexsZeXHW
https://plus.google.com/u/0/107708120842840792570/posts/8j2GVw72i1E
https://plus.google.com/u/0/107708120842840792570/posts/TtBFUXhe5HU

