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Summary 
Is it possible to minimize the overhead of calling Wasm code from JavaScript by inlining (small) 
Wasm functions? 

Overview 
Ideally, calling into WebAssembly from JavaScript should be very fast, but currently this is not 
always the case in V8. 

For example, let's say we have a WebAssembly function to multiply two integer numbers, like 
this: 

int square(int x, int y) {​
  return x * y;​
} 

and say we call that from JavaScript in a tight loop like this: 

... 
let instance = new WebAssembly.Instance(module, importObj); 
let wasm_square = instance.exports.square; 
 
function js_square(value) { return value * value; } 
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function test() { 
    let result = 0; 
    for (let i = 0; i < 1e9; i++) { 
        result = wasm_square(i % 999); 
 
        // JS alternative: 
        // result = js_square(i % 999); 
    } 
    return result; 
} 
 
let start = Date.now(); 
test(); 
let end = Date.now(); 
print(" time: " + (end - start) + " msec."); 

​
We see that the Wasm version is ~4x slower than the pure JavaScript implementation (where 
we call a JavaScript version of function “square” instead of a Wasm function): 

 

We also see that V8 is slower than SpiderMonkey, where some work already went into this 
optimization, as explained in the blog post Calls between JavaScript and WebAssembly are 
finally fast 🎉.  

While this is clearly an extreme example, it shows that there is an overhead in Wasm calls that 
should be minimized, especially when the call is made from TurboFan optimized code. 
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There are two reasons for this overhead: 

1.​ TurboFan does not optimize calls to a Wasm function, but instead treats these calls as 
function calls to a JSFunction, the so-called JS-to-WASM wrapper, which: 

a.​ Unboxes all parameters, converting them from tagged types into WebAssembly 
native types (i32/i64/f32/f64). 

b.​ Sets the “thread_in_wasm” flag in TLS, used for trap handling 
c.​ Calls the Wasm function. 
d.​ Resets the “thread_in_wasm” flag in TLS, used for trap handling 
e.​ Boxes the result into a tagged type. 

 

2.​ TurboFan can easily inline small JavaScript functions, like the function js_square in the 
previous example, so avoiding all overhead caused by a function call. 

We fixed the first issue by inlining the JS-to-Wasm wrapper at the call site (see CL2596784 and  
CL 2599266). More details can be found in the Faster JS to Wasm calls doc. 

 

This allowed us to make Wasm calls quite faster: 
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:  

But there is still a performance gap comparing JS->Wasm calls with pure JS->JS calls that we 
would like to address. Can we act on the second reason for the slowdown and inline small 
Wasm functions in TurboFan optimized code? 

​
 

Implementation 
The implementation of a small prototype for Wasm function inlining can be found in this CL 
2609912. 

This is built upon a version of V8 already modified to support the inlining of JS-to-Wasm 
wrappers (described above). Inlining not only the wrapper but also the Wasm function itself is 
the logical extension of that idea. 
 
For this, we introduce two new operators: 

-​ JSWasmCall, which represents a call to a JS-to-Wasm wrapper (made from a 
JavaScript function) 

-​ WasmCall, which represents a call to a Wasm function (made from a JS-to-Wasm 
wrapper). 
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The initial idea in CL2596784 for the inlining of JS-to-Wasm wrappers was to implement inlining 
as part of simplified-lowering. This works but is unnecessarily complicated; the biggest 
problem is that we need to replicate in simplified-lowering the inlining logic already 
implemented in JSInliner and JSInliningHeuristic, with the additional complication 
that classes SimplifiedLowering and RepresentationSelector do not inherit from 
Reducer or AdvancedReducer, so they don’t provide all the functionalities to edit a graph 
that are expected by the JSInliner code. We can do better by reusing the existing inlining 
logic provided by JSInliner. 

For this reason we introduce a new TurboFan phase, named wasm-inlining that runs  just after 
simplified-lowering and is logically similar to the [JavaScript] inlining phase we run at the 
beginning of the pipeline but works on a “lower-level” IR, where the “WasmMachineCode” 
graph generated by the Wasm compiler can be inlined in the graph of the caller function. 

Implementation details 

1.​ In the TurboFan js-call-reducer phase, we detect when a JSCall is directed to a 
JS-to-Wasm trampoline. The JSCall node is converted into a JSWasmCall. The 
associated parameter type, JSWasmCallParameters, contains all the data required to 
inline the Wasm call: 

-​ A pointer to the Wasm NativeModule 
-​ The index and signature of the Wasm function to call. 

2.​ In the simplified-lowering phase, we lower the JSWasmCall, appropriately setting the 
UseInfos that correspond to the type each argument of the Wasm function and to the 
result type. 

3.​ When WebAssembly inlining is enabled, we run the new wasm-inlining phase of the 
TurboFan pipeline. The phase contains a subset of the reducers we have in the inlining 
phase: only DeadCodeElimination, CommonOperatorReducer and 
JSInliningHeuristic (which here only considers JSWasmCall and WasmCall 
nodes). 
In JSInliningHeuristic: 

●​ For a JSWasmCall node, we call 
WasmWrapperGraphBuilder::BuildJSToWasmWrapper to generate the IR 
for the JS-to-Wasm wrapper, and inlines it (with JSInliner::InlineCall). 

This is all we need to do if we just want to inline the wrapper. 

If we also want to inline the called function, we transform its Call node into a 
WasmCall node, which will be then visited as part of the same graph traversal. 
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●​ For a WasmCall node, we call BuildGraphForWasmFunction to generate the 
graph for the Wasm function. 

A WasmCall is associated with a parameter type WasmCallParameters which 
is like CallParameters but contains additional data required for this 
compilation like the Wasm function index and signature and a pointer to the 
Wasm NativeModule, from which we get the function bytecode. 

This graph is also inlined, with a logic similar to the one provided in 
JSInliner::InlineCall. 

That’s all. The following phases of the TurboFan compilation run normally on a graph that now 
also contains nodes to generate for both the call wrapper (boxing/unboxing arguments and the 
result) and for the Wasm function itself.​
 

Results 
If we run the “square” test above with our prototype (CL 2609912), we see that the function 
becomes (almost) as fast as inlined JavaScript, and this is quite promising:​
 

 Time [msec] 

V8 - Wasm version 6540 

V8 - JavaScript version 1637 

SpiderMonkey - Wasm version 3526 

SpiderMonkey - JavaScript version 1855 

V8 - Wasm version with inlined JS->Wasm wrapper 4461 

V8 - Wasm version with inlined Wasm function 2561 
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Finally, notice that the remaining performance gap between inlined JavaScript functions and 
inlined WebAssembly functions is almost entirely due to the code required to set/reset the 
thread_in_wasm flag in TLS. The example test function above - compiled by a version of 
TurboFan modified to not generate any code for this flag - runs exactly as fast as the version 
that calls the JavaScript version of “square” (1630 msec). It could be safe to omit this code for 
inlined functions that do not contain memory accesses. 

 

Open issues 
The main idea is quite simple, and the proof of concept in CL2609912 works for simple cases. 
But there are (at least!) two big issues that need to be addressed. 

Trap handling 
Some WebAssembly operators may trap under some conditions. In particular, out of bounds 
load and store memory accesses cause traps. 

V8’s trap-handling mechanism is described in this doc: WebAssembly Out of Bounds Trap 
Handling. 
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In order to manage out-of-bound accesses, V8 allocates “guard pages” around the Wasm 
memory pages. Any access to a guard page triggers an access violation fault that may be 
recovered with the throwing of a JavaScript exception. 

V8 provides trap-handling support for several platforms, which is then integrated with the 
signal handler of the  embedder. 

From the point of view of TurboFan, the access to Wasm memory is represented by 
ProtectedLoad and ProtectedStore nodes. For these nodes, the compiler generates 
additional data that form a “Fault location table”.  

In the current implementation, for each compiled Wasm function, a CodeProtectionInfo 
struct is generated that contains the info needed to handle traps in that function. 

struct CodeProtectionInfo { 
  Address base; 
  size_t size; 
  size_t num_protected_instructions; 
  ProtectedInstructionData instructions[1]; 
}; 

A CodeProtectionInfo contains an array of ProtectedInstructionData items, one for 
each “protected” instruction, that specifies the offset of the “landing pad” from which the 
exception handler should resume execution, throwing the corresponding JavaScript exception: 

struct ProtectedInstructionData { 
  // The offset of this instruction from the start of its code object. 
  uint32_t instr_offset; 
 
  // The offset of the landing pad from the start of its code object. 
  uint32_t landing_offset; 
}; 

All the CodeProtectionInfo objects are stored into a global linked list. 

Fault handling is platform-dependent. On Windows an invalid memory access causes a 
Structured Exception Handling (SEH) access-violation exception that is handled by the SEH 
exception filter installed by V8 (function HandleWasmTrap). 

When a SEH exception is raised, this filter: 

1.​ Checks whether V8 was currently running Wasm code. The information for this is stored 
in TLS, in the thread-local thread_in_wasm flag.  
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2.​ If the fault actually happened in Wasm code, the filter iterates over the list of 
CodeProtectionInfos looking for a code range that contains the fault address. If 
found, it means that the fault originated in the corresponding Wasm function, and it 
iterates over the vector of ProtectedInstructionData to find the landing pad that 
corresponds to the fault offset, and to update accordingly the instruction pointer in the 
EXCEPTION_RECORD so that the execution will resume from there. 

Trap handling for inlined Wasm functions 

The trap-handling mechanism just described is broken if we inline a small Wasm function in the 
caller JavaScript function. 
But theoretically there should be no reason why this mechanism could not be extended to also 
work for inlined functions. We might just need to generate CodeProtectionInfos also for all 
compiled JavaScript functions that contain inlined Wasm functions. 
 
Instructions to set and reset the  “thread_in_wasm ” flag should still be correctly generated 
around the inlined Wasm code, as part of the inlining of the JS-to-Wasm wrapper. 
 
A big complication is that, while WasmCode does not move with garbage collections, this is not 
true for JavaScript Code objects. Therefore, in each GC we would possibly need to update the 
code address ranges in the global list of CodeProtectionInfos.​
 
A very simple workaround is not to rely on the exception-handling mechanism to detect 
accesses to memory out of bounds, but to instead emit bounds-checking code. This works, but 
possibly with a significant loss of performance that could make inlining a little useless.  
 
There are other issues with traps: even the mere invocation of builtin and runtime functions to 
trigger a trap and throw an error becomes quite complicated, as explained later in the “Passing 
WasmInstance to inlined code” section. 

Lazy deoptimization 
What happens if we have a Wasm function that calls back into a JavaScript function, which 
causes the lazy deoptimization of the caller function? 
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If we just inline the JS-to-Wasm wrapper, we can handle this case with a specific 
lazy-deoptimization builtin, which is called by the Deoptimizer to complete the work of the 
wrapper before resuming execution of the caller function in the interpreter. 

But if we also inline the Wasm function, things break down. 

 

In this case we will have a call to a Wasm-imported callback function from the inlined Wasm 
code. At the end of this call the compiled caller function should be deoptimized. But from 
where should execution resume, in the interpreter? If we resume from the JavaScript code that 
immediately follows the Wasm call, we skip all the code in the Wasm function after the callback. 

But we cannot execute the rest of the Wasm function in an hypothetical Wasm-interpreter 
(which does not even exist anymore in V8). In theory, given that Liftoff compiler supports 
debugging, it could be possible to generate “Wasm deopt data” for inlined Wasm functions, 
and resume the execution in Liftoff after having suitably recreated the stack.  But we do not 
generate any deoptimization data for Wasm code, in TurboFan, and the added complexity 
would probably be excessive for the usefulness of this feature. 

What to do, then? Wasm inlining is especially useful for small, “leaf” functions, that generally do 
not call imported functions. 

A possibility could then be to consider as “non-inlinable” any Wasm functions that: 

-​ Calls any function imported by the Wasm module 
-​ Might call any other “non-inlinable” Wasm function 

This is because the deoptimization could be triggered by any sequence of Wasm calls that ends 
up calling an imported function. The “non-inlinable” property of a function could be evaluated 
at validation or compilation time. 

An additional complication is given by the “call_indirect” Wasm instruction, which results 
in an indexed call to one of the functions defined in the module Table. The simplest option is to 
also consider Wasm functions that make indirect_calls as “non-inlinable”. 

To simplify things, we could just avoid inlining any Wasm function that makes a direct or indirect 
call. 
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Passing WasmInstance to inlined code 
A Wasm function sets up a specific stack frame, WasmFrame, which contains the WasmInstance 
in the fourth frame slot (see CodeGenerator::AssembleConstructFrame).

 
There are several builtins and runtime functions that expect that the WasmInstance is 
accessible from the stack frame. This doesn’t work when we inline a Wasm function, because 
the JS caller function runs with a JavaScriptFrame (StandardFrame) that doesn’t have this 
WasmInstance. 
 
The accessors used for this are: 

-​ TNode<WasmInstanceObject> WasmBuiltinsAssembler::LoadInstanceFromFrame() 
called by builtin functions like WasmThrow, WasmTrap, …​
 

-​ WasmInstanceObject GetWasmInstanceOnStackTop(Isolate* isolate) 
called by runtime functions like Runtime_WasmThrowCreate, Runtime_WasmTableGrow, 
and so on. 

Possible workarounds 

There are no simple solutions to this issue. Possible workarounds are: 
-​ We could store the WasmInstance not on the stack but somewhere else, for example in 

TLS. But we would need to change how all Wasm functions access their instance, not 
only the inlined ones. Also, this wouldn’t work because we would need to store a whole 
stack of Wasm functions, given that a Wasm function can call another, possibly from a 
different module. 

-​ We could add a slot for a WasmInstance also to JavaScriptFrame, making sure that it’s 
located in the same position as in the WasmFrame. This should work, but requires 
considerable changes to the existing code. 
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-​ We might pass the WasmInstance as argument to all runtime functions that access it 
from the stack. We would pay a small performance cost, which could probably be 
acceptable given that many WebAssembly runtime functions are rarely invoked. An 
exception to this are traps, which deserve a more detailed analysis. 

Managing traps without WasmInstance 

Currently the code that throws trap errors uses the WasmInstance retrieved from the 
WasmFrame. For example, the compilation of a Wasm function that contains an unreachable 
instruction produces a call to Builtins_ThrowWasmTrapUnreachable, which calls 
Builtins_WasmTrap(kWasmTrapUnreachable), which is implemented in Torque as: 

builtin WasmTrap(error: Smi): JSAny {​
  tail runtime::ThrowWasmError(LoadContextFromFrame(), error);​
} 

where LoadContextFromFrame reads the instance from the stack: 

macro LoadContextFromFrame(): NativeContext {​
  return LoadContextFromInstance(LoadInstanceFromFrame());​
} 

There are a dozen builtins similar to Builtins_ThrowWasmTrapUnreachable which all call 
WasmTrap with different error codes. 
How to make this work for inlined code? We can observe that WasmTrap does not really need 
the WasmInstance, which is only used to retrieve the NativeContext. If we assume that we have 
access to the Context in the caller (JS) function, we can just pass it to a different builtin, 
designed to be used from inlined code. Something like: 

  builtin WasmTrap_Inlined(context: Context, error: Smi): JSAny {​
    tail runtime::ThrowWasmError(context, error);​
  } 

This solution looks promising, but there are more complications with traps. 

For a Wasm function the call to  Builtins_ThrowWasmTrapXYZ is generated as a call to a Wasm 
runtime stub defined in that module. Function 
WasmOutOfLineTrap::GenerateCallToTrap just encodes the stub index, that will be 
patched later when the code is added to the NativeModule: 

  __ near_call(static_cast<Address>(trap_id), RelocInfo::WASM_STUB_CALL); 
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This is normally done in NativeModule::AddCodeWithCodeSpace, which relocates the call to a 
near call to a runtime stub entry, which is a far jump table slot in the NativeModule. 

For inlined code we should do the patching in Code::CopyFromNoFlush, but this requires many 
changes. We need to somehow store the information that that specific WAS_STUB_CALL is 
associated with that specific NativeModule. Furthermore, the call is currently implemented as a 
near-call and we calculate a 32-bit offset, which doesn’t work if the instruction pointer is not 
from WasmCode for the same Wasm module but it’s instead in a random Code object in the 
heap. So the way we generate the call needs to be very different for inlined code. 

Conclusions 
Inlining Wasm functions that rely on the presence of the WasmInstance on the stack, and 
especially with functions that may trap, is really complicated.  
The simplest solution is just to not inline these functions. We already said that, at least in the 
initial implementation, for the sake of simplicity, we should  avoid inlining Wasm functions that 
make any direct or indirect call. 
We would probably also need to add all functions that might trap to the set of non-inlinable 
functions. This is quite a big limitation, though, given that there are several instructions that 
may produce a trap: 

-​ Memory Instructions: 
-​ load, store, memory.fill, memory.copy, memory.init 

-​ Table instructions: 
-​ table.get, table.set, table.fill, table.copy, table.init 

-​ Control instructions: 
-​ unreachable, call_indirect 

-​ Numeric instructions: 
-​ idiv_u, idiv_s, irem_u, irem_s, trunc 

All that leads to an important question... 

Is inlining Wasm functions really useful? 
It is important to notice that only a subset of the functions in the module can be inlined. 
Obviously we can only inline in a JavaScript function only functions that are exported by the 
Wasm module, and it only makes sense to inline relatively small functions. We expect that the 
inlining at the level of Wasm->Wasm calls is already done by the LLVM compiler, in release 
builds. 
  
There are also other constraints, we saw that we can’t inline Wasm functions that make calls to 
imported functions, since they could cause lazy deoptimizations, and consequently we cannot 
inline functions that call other “non-inlinable” Wasm functions. 
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This raises the question: how many functions can actually be inlined in “real world” 
applications? To find out we analyzed a couple of large Wasm modules, earthwasm.wasm, 
which is part of Google Earth, and dotnet.wasm, which is part of Mono/Blazor. 
 

 earthwasm.wasm dotnet.wasm 
(3.2.0-preview3.20168) 

Number of functions 56364 6354 

Number of exported 
functions 

65 61 

Exported functions with 
bytecode size > 500 

4 2 

Exported functions that call 
imported functions or other 
non-inlinable functions 

0 0 

Exported functions that 
make indirect_calls 

22 3 

Exported functions that 
access memory 

2 2 

Inlinable functions 39 56 

 
These examples tell us that the number of “inlinable” functions is relatively small, but the 
usefulness of inlining actually will depend on the number of times these functions are called 
from JavaScript. 
 
By instrumenting V8, we can measure how many times Wasm functions are actually called by 
JavaScript, in a few Wasm-based real-world web applications running with Chromium:  
 

 Peak calls/sec 

Google Earth ~7500 

Adobe Acrobat Demo ~1700 

Blazor Demo ~1500 

Doom 3 Demo ~150 
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Here we are only counting calls to Wasm functions that can “easily” be inlined (i.e. leaf functions 
that don’t access the memory). 
 
The results vary considerably, and obviously depend on how Wasm is used by JavaScript in 
different apps. Here the numbers are measured in the time intervals where there is the most 
interaction with the user interface, which are usually the busiest intervals for what concerns the 
interaction with WebAssembly code. 
For example, for Google Earth, we measure this trend of number of calls bucketed in 100msec 
intervals: 

 

Conclusions 
The original idea for the WebAssembly application model was to call Wasm from JavaScript to 
run long workloads, and for this kind of applications, inlining or not inlining Wasm functions will 
not make much difference. But there are also applications like Google Earth that are quite 
"chatty" and make a large number of calls to Wasm from JavaScript. 
 
WebAssembly is quickly evolving and it is not just for games and for computationally heavy 
applications. It could be used, on the Web or server-side, with applications where a number of 
small Wasm modules are integrated in a JS system, with very frequent calls between the two. In 
this case the cost of the transition between WebAssembly can become significant, and making 
these calls as fast as possible will enable new scenarios. 
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