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1. Abstract  
New York City, the most populous city in the United States, is threatened by exacerbated heat exposure due 
to the urban heat island (UHI) effect induced by its heavily urbanized environment and limited tree canopy 
cover. Decades of racist policy and planning have led extreme heat to disproportionately impact people of 
color and low-income residents, especially in the context of public transportation by bus. This NASA 
DEVELOP project partnered with Transportation Alternatives to identify the most heat vulnerable 
populations in the city, characterize the extent of urban heat, and complete an individual bus stop analysis. We 
utilized NASA Earth observations, including Landsat 8 Thermal Infrared Sensor (TIRS) and Landsat 9 
TIRS-2 to determine UHI extent and anomalies. Leveraging data from the City of New York and the 
American Community Survey (ACS), we constructed a transportation-specific heat vulnerability index to 
understand intersecting social and economic vulnerabilities by performing a Principal Component Analysis. 
After identifying major hotspots in the Bronx, Queens, and Brooklyn, we modeled mean radiant temperature 
at the hottest and highest ridership bus stops identified by our UHI analysis to estimate thermal comfort 
using the Urban Multi-scale Environmental Predictor’s SOLWEIG tool. Our end products will be 
incorporated into Transportation Alternative’s Spatial Equity NYC dashboard and inform their community 
engagement strategies as they organize with residents to advocate for cooling interventions. 

 
Key Terms: Environmental Justice, urban heat islands, public transportation, vulnerability   
 
2. Introduction 
2.1. Background Information  
This study focuses on what is federally recognized as New York City (NYC), New York, on the ancestral 
lands of the Lenape people (Lenapehoking), during the period from 2017 to 2022. NYC is the most populous 
urban area in the United States, and is composed of five boroughs: the Bronx, Brooklyn, Manhattan, Staten 
Island, and Queens. The city covers a total area of 300 miles2, and contains about 8.5 million people, with a 
diverse population of 31.9% White, 23.4% Black, 14.2% Asian, 28.9% Hispanic/Latino, and 0.5% Native 
American: the largest urban Indigenous population in the US (US Census Bureau, n.d.). This area remains of 
great importance to the Lenape people, as well as the population of over 100,000 other Indigenous people 
who live in the city (The Lenape Center, n.d.; NYC CHR, n.d.; Barnard, 2019). 
 
NYC is recognized for its wide variety of transportation options, including one of the world’s oldest subway 
systems and extensive bus system, both administered by the Metropolitan Transportation Authority (MTA). 
The bus system receives 2.2 million riders per weekday along 300 bus routes and 16,000 stops across the five 
boroughs (MTA, 2020; USAWelcome, n.d.). While intended to improve service, the ongoing process to 
redesign bus networks takes years, leaving some stops and routes exposed to the elements or inaccessible, 
especially in historically redlined minority neighborhoods (MTA, 2022; Stacy et al., 2020). Oppressive public 
policies, as well as the displacement of Indigenous people and other minority groups, have perpetuated 
inequities in shade distribution and heat exposure, a disparity that has only further intensified with climate 
change induced extreme heat (Hoffman et al., 2020). 
 

2.1.1 The Urban Heat Island Effect  
The Urban Heat Island (UHI) effect is the phenomenon in which urban areas experience higher temperatures 
than surrounding rural and exurban areas due to the higher concentration of solar radiation-absorbing 
impervious surfaces (roads and buildings) and the lack of green space and canopy cover (EPA, n.d.). 
Exposure to extreme heat can lead to dangerous health effects including heat stroke, kidney disease, 
cardiovascular disease, and even death, especially when accompanied by air pollutants such as PM2.5 or 
surface-level ozone (Anenberg et al., 2020; Ebi et al., 2021). The UHI effect has serious implications on 
transportation accessibility as people are exposed to extreme heat while walking to and waiting for buses. 
Shade infrastructure, such as shelters and trees, can significantly reduce the impact of urban heat around bus 
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stops (Park et al., 2021). However, urban greening can also have a gentrifying effect on minority and poor 
neighborhoods in the absence of policy intervention (Cool Neighborhoods NYC, n.d.; Gould and Lewis, 
2018).  
 
2.1.2 Urban Planning Background 
Racist policy and planning practices of the past, and present, have shaped NYC’s inequitable geography (Sze, 
2006). Black communities have been displaced from their homes due to redlining, decades of disinvestment, 
and forced removal due to urban ‘renewal’ projects (Fullilove, 2001; Sze, 2006). This displacement reinforced 
segregation, amplifying existing spatial inequities that still impact the city today (Fullilove, 2001; NYC 
Housing Preservation and Development, n.d.). Consequently, urban heat is experienced disproportionately, 
with Black and low-income New Yorkers facing the greatest impacts to their health (NYC Environment and 
Health, n.d.). Structural racism and income inequality diminishes access to the healthcare and cooling 
resources necessary to endure heat, and those who are linguistically isolated face additional barriers during 
extreme heat events (Hoffman et al., 2020).   
 
2.1.3 Heat Vulnerability Index 
Previous research has investigated urban heat and contextualized its effects with population data, canopy 
coverage, and other social factors to create vulnerability indices that indicate areas and populations most 
affected by the UHI effect (Corburn, 2009; Nayak et al., 2018; Van Der Hoeven et al., 2018; Hammer et al., 
2020). Building off past DEVELOP projects such as Milwaukee Urban Development II, Yonkers Urban 
Development II, and Tempe Urban Development II (Keyes et al., 2022, Walechka et al., 2022, Boogaard et 
al., 2020), we analyzed vulnerable populations in NYC, incorporating socioeconomic, environmental and 
transportation factors.   
 
2.2 Project Partners & Objectives  
Transportation Alternatives (TA) is a non-profit organization with a fifty-year legacy of advocacy and 
community organizing for the reclamation of public space from cars in New York City. Originally focused on 
increasing bike accessibility, their mission has expanded to creating safer, more equitable streets and most 
recently, urban heat. Alongside collaborators at the Massachusetts Institute of Technology, TA built Spatial 
Equity NYC, an interactive dashboard that visualizes data related to public health, mobility, and 
environmental conditions. This accessible dashboard effectively communicates transportation-related data 
and its associated disparities, empowering grassroots change for better transportation within the city.  
Our team conducted an urban heat island analysis to identify areas with the greatest heat exposure, 
incorporating satellite imagery from Landsat 8 TIRS and Landsat 9 TIRS-2. We then constructed a 
vulnerability measure working off NASA DEVELOP’s UHEAT 2.0 (Urban Heat Assessment Tool) (Agrawal 
et al., 2022) to identify five high vulnerability bus stops and routes. These map layers can be included in TA’s 
dashboard and our findings will inform their future advocacy for just distribution of cooling interventions as 
bus stops are redesigned. 

 
3. Methodology 
3.1 Environmental Justice Principles 
We drew from the First National People of Color Environmental Leadership Summit’s Principles of 
Environmental Justice (1991) and the Jemez Principles of Democratic Organizing (1996) to create guiding 
principles for our research. As such, our research: 

i.​ Is based on mutual respect and justice for all peoples 
ii.​ Emphasizes self-determination and bottom-up organizing 
iii.​ Affirms the need for urban policies to rebuild our cities in balance with nature and provide fair 

access for all to the full range of resources 
iv.​ Will operate through a community-centered lens 
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v.​ Is committed to building strong relationships through transparency, accessibility, and reciprocity. 

These principles guided our research interests, work with our community partners, and considerations in 
creating our vulnerability analysis.  
 
3.1.1 Data Acquisition  
We acquired NASA Earth observations from Landsat 8 TIRS, Landsat 9 TIRS-2, and ISS ECOSTRESS to 
calculate UHIs, as outlined in Table 1. We used Google Earth Engine (GEE) script written by the Fall 2022 
Virtual Environmental Justice (VEJ) Milwaukee Urban Development II team (Keyes et al., 2022) to acquire 
daytime land surface temperature (LST) from Landsat 8 TIRS and Landsat 9 TIRS-2. To derive nighttime 
LST, our team requested Level 2 ISS ECOSTRESS imagery for LST (ECO2LSTE.001) and cloud masked 
(ECO2CLD.001) using the NASA Application for Extracting and Exploring Analysis Ready Samples 
(AppEEARS) for our study area and period.  
 
Our team incorporated a range of ancillary datasets as captured in Tables 2 and 3. To obtain census tract level 
demographic information for NYC, we used the US Census Bureau’s American Community Survey 
Application Programming Interface (API). Following our analysis of UHIs and the creation of the 
vulnerability analysis, we used transit variables, as listed in Table 3, to determine vulnerable bus stops. We then 
acquired a 1-foot Digital Elevation Model (DEM), 6-inch Land Cover raster, and 1-foot Digital Surface 
Model data (Table 2) for NYC to model mean radiant temperature at the 5 high vulnerability stops.  
 
Table 1  
NASA Earth observations collected for Land Surface Temperature (LST) analysis 

Source Sensor Product ID Purpose Image 
Dates  

Acquisition 
Method 

Spatial 
Resolution 

Landsat 8 TIRS LANDSAT/
TIRS/L 
T08/C02/Le
vel-2 

Calculate daytime 
LST to identify and 
map urban heat 
islands. 

5/1/17 - 
9/30/21 

GEE 100-meter 

Landsat 9 TIRS-2 LANDSAT/
LC09/C02/T
2_L2 

Calculate daytime 
LST to identify and 
map urban heat 
islands. 

5/1/22 - 
9/30/22 

GEE 100-meter 

ISS  ECOSTRESS ECO2LSTE.
001 

Calculate nighttime 
LST to identify and 
map urban heat 
islands at 
nighttime.  

5/1/18 
– 
9/30/22 

AppEEARS 70-meter 

 
Table 2 
Ancillary datasets collected for processing at different geographic levels and modeling with SOlar and LongWave Environmental 
Irradiance Geometry model (SOLWEIG) 
 

Dataset Source Use Year(s) Data Type 

City Council District 
Boundaries 

City of New York 
Analyze urban heat by city 
council districts  2022 Geographic 

boundary 
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Community Board 
District Boundaries 

City of New York 
Analyze urban heat by 
community board districts  2022 Geographic 

boundary 
New York City 

Shapefile City of New York Define study area – Shapefile 

Census Tract Boundary US Census Bureau 
Geographic unit for 
vulnerability analysis _ Geographic 

boundary 
NYC Topobathymetric 

LiDAR Highest Hit 
Digital Surface Model 

(DSM) 

New York State 
Generate Building and Tree 
Digital Surface Models (DSM) 
to model TMRT in SOLWEIG 

2017 Raster 

1 Foot Digital 
Elevation Model 

(DEM) 
City of New York 

Input to SOLWEIG to model 
TMRT 2022 Raster 

Land Cover Raster 
(6-inch resolution) City of New York Input into SOLWEIG to 

model TMRT 2017 Raster 

ERA5 Meteorological 
Data 

Copernicus 
Climate Change 

Service 

Input to SOLWEIG for 
continuous meteorological data 2020 Text 

 
  
Table 3 
Ancillary datasets collected for constructing vulnerability and transit stop analysis 
  

Dataset  Source  Dates  Data Type  

Bus Report Cards Bus Turnaround 
Coalition 2022 Transit variable 

NYC Bus GTFS (General Transit 
Feed Specification) Open Mobility Data 2022 Transit variable 

Bus Stops and Routes City of New York 2022 Transit variable 

Subway Stops City of New York 2020 Transit variable 

Ferry Stops City of New York 2020 Transit variable 

Annual Bus Ridership 
Metropolitan 

Transportation 
Authority 

2017-2022 Transit variable 

Census Tract Boundary US Census Bureau 2021 Geographic boundary 

American Community Survey 
Demographic Information US Census Bureau 2017- 2021 Sociodemographic variables 
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Average PM2.5 Concentrations City of New York 2008-2019 Health and air quality variable 

Existing Bus Shelters City of New York 2022 Transit variable 

Tree Canopy Cover National Land Cover 
Database (NLCD) 2011 Environmental Variable 

Population Working from Home 
per Census Tract US Census Bureau 2017-2021 Sociodemographic variable 

 
3.2 Data Processing 
3.2.1 Heat Data 
The UHI effect is measured by the factor of difference in heat between heavily urbanized areas and exurban, 
forested spaces. Following previous DEVELOP project methodologies, Yonkers Urban Development and 
San Diego Urban Development (Walechka et al., 2021; Dialesandro et al., 2021), we created a rural reference 
shapefile compositing approximately 30 miles2, about one-tenth of the total area of NYC, from Wharton State 
Forest, Bass River State Forest, and Swan Bay. These nearby forested areas have similar climates and elevation 
ranges to NYC, making them a strong proxy for what land surface temperatures would be in NYC if it were 
not urbanized. We processed Landsat 8 TIRS, Landsat 9 TIRS-2, and ECOSTRESS imagery for both our 
rural reference and NYC shapefiles. 
 
Using GEE, we derived daytime LST from Landsat 8 TIRS and Landsat 9 TIRS-2 data. We specified our 
study years as 2017-2021 for Landsat 8 TIRS and appended VEJ Milwaukee Urban Development II’s script 
(Keyes et al., 2022) to include more recent imagery from Landsat 9 TIRS-2 for 2021-2022. The code masked 
cloud, cloud shadow, and water pixels to generate median daytime LST rasters for land pixels only and 
converted LST from Kelvin to Fahrenheit. By using AppEEARS to acquire ECOSTRESS data, the imagery 
was subset and gridded prior to download. We subsequently filtered available data for nighttime hours, 0:00 to 
5:00 Eastern Daylight Time, and masked clouds and cloud shadows pixels in ArcGIS Pro using code written 
by the VEJ Milwaukee Urban Development II team (Keyes et al., 2022).  
 
3.2.2 Demographic Data 
We obtained the demographic data for the PCA from the 2017-2021 5-year American Community Survey 
(ACS) in NYC using the Tidycensus package in R. We used the established code to obtain variables for 
percent minority, median household income, poverty status, percent population over 65, and percent over 65 
living alone. We created additional variables for the number of people that commute to work by bus and the 
number of people that work from home. Each variable, except for median income, was converted to a 
percentage by dividing the value by the total population.  

Additional environmental variables were collected and cleaned to include in the PCA. A 300 m raster of 
Particulate Matter (PM2.5) concentrations was downloaded from the City of New York. Using the extract 
function from the raster package in R, average PM2.5 values were collected per census tract. We downloaded 
a 30 m Tree Canopy Cover raster from the 2011 National Land Cover Database (NLCD), and the average 
values were also extracted to the census tract shapefile in R. Additionally, we downloaded a bus stop shelter 
vector layer from the City of New York and imported this shapefile and the census tract boundaries into 
ArcGIS Pro. We performed a spatial join between the census tracts and the bus stop shelters to get the 
number of shelters per tract. Finally, the number of bus transfers was extracted from the General Transit Feed 
Specification (GTFS) and spatially joined to a census tract layer. This result was saved as a CSV and was 
imported into R. The demographic and environmental variables were merged into a final dataset in R which 
was imported into a python script in Google Colaboratory to run the PCA, outlined in section 3.3.2.    
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3.2.3 Transit Data 
To analyze heat vulnerability at the individual bus stop level, we looked at our UHI factor (as outlined in 
3.3.1), proximity to other transportation, bus speed, bus reliability and presence of bus shelters. We generated 
UHI factor for each stop by processing a spatial join (nearest neighbor) for each bus stop, as based on the 
census tract level of analysis. To determine transit proximity for each stop, we obtained bus stop, subway stop, 
and ferry stop data from the City of New York and merged them into one layer. Then, we did a count within 
a 5-minute walking distance (0.25 miles) for each bus stop to create our Transit Proximity Index (TPI). Bus 
shelter data was joined by attribute to all bus stops, to identify which stops did or did not have shelters. 
Finally, route data was taken from the Bus Turnaround Coalition’s Bus Route report cards (which assigned 
scores to routes as a measure of speed, reliability, bus bunching and wait time). From the report card, letter 
grades were changed to numerical scores. These scores were joined by attribute to bus stops as based on the 
first stop listed. All these metrics were then used to determine study areas of interest, detailed in section 3.3.3. 
 
3.2.4 SOLWEIG 
Mean radiant temperature (TMRT) is an essential metric of human thermal comfort that can provide a better 
indication of a bus rider’s felt experience while at a bus stop. It is determined by the temperature of 
surrounding surfaces and whether those surfaces, such as buildings or trees, provide shade (Rakha et al., 
2017). After identifying the 6 study spots of interest, we estimated TMRT using the SOLWEIG (SOlar 
LongWave Environmental Irradiance Geometry) model as a plug-in in QGIS. Landcover data, Digital Surface 
Models and a Digital Elevation Model for NYC were downloaded from the City of New York via NYC Open 
Data. For each study area determined from analysis in section 3.3.3, we used GDAL’s clip raster by extent in 
QGIS to create smaller extents for each of these 3 initial inputs. Then, we used raster calculator to create 
building only and tree only DSMs. For each selected bus stop, Urban Multi-scale Environmental Predictor’s 
(UMEP) Pre-Processing toolbox was used to generate a wall aspect, wall height, sky view factor, and 
re-classified land cover raster using the clipped DEM, DSM of surrounding trees, and DSM of buildings and 
clipped land cover raster.  
 
3.3 Data Analysis 
3.3.1 Identifying NYC’s Urban Heat Islands 
After acquiring the median daytime LST raster for NYC during our study period, we generated zonal statistics 
on the rural reference vector in ArcGIS Pro to calculate the mean rural reference temperature. This provided 
a single reference point temperature from which we calculated the difference in daytime LST per pixel in 
NYC to ultimately visualize the UHI factor. We intended to repeat this process using the median nighttime 
LST rasters generated from processing ECOSTRESS data, however, the ECOSTRESS imagery for our study 
period appeared patchy and distorted. After significant troubleshooting, we were unable to diagnose the issue 
and could not quality check the data. We adjusted our methodology to focus on the daytime UHI factor, 
which was more pertinent to the analysis as bus ridership is significantly higher during daytime hours.  
 
3.3.2 Principal Component Analysis 
To create the vulnerability analysis, we ran a Principal Component Analysis (PCA) following the methods of 
the UHEAT 2.0 tool by the Spring 2022 Pop-Up Project (PUP) Urban Development DEVELOP team 
(Nisbet-Wilcox et al., 2020). The UHEAT 2.0 package contains a Python script for a PCA that compiles 
variables into related components to reduce dimensionality in the data. We first ran three separate PCAs from 
environmental, social, and transportation variables, each consisting of one principal component that was used 
to create an index. After some unexpected results, we shifted to using only one variable for the bivariate 
analysis. From these principal components, we selected the variable that explained most of the variability 
within that component. These selected variables were aggregated to the community district level using a 
spatial join in ArcGIS Pro. From the community district level layer, we generated a series of bivariate maps 
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showing the relationships between land surface temperature and the selected environmental, social, and 
transportation variables for NYC. Lastly, we created layers at the route level to include in our map package. 

 

 
Figure 1. Flowchart outlining methodologies for data processing, data analysis, and end product creation. 

 
3.3.3 Finding the Most Vulnerable Bus Stops and Routes 
Utilizing the UHI factor, bus shelter data, bus report card grade and TPI score, we were able to identify 
vulnerable stops of interest. We narrowed down the data for each factor, only including stops in the 90th 
percentile of UHI factor, 10th percentile of TPI, unsheltered, and having received a D or F for route grade 
(see Appendix A for full city layers). Parsing through these reduced stops, we determined stops fitting all 4 
criteria for each borough. 
 
3.3.4 Mean Radiant Temperature (TMRT) and 3D Modeling the Most Vulnerable Stops    
We input the components listed in 3.2.4 into UMEP’s Mean Radiant Temperature (SOLWEIG) tool. 
Additionally, we input downloaded average meteorological data for the summer of 2019 via the ERA5 Python 
API created by the Copernicus Climate Change Service, following instructions in the SOLWEIG manual. 
Additionally, we used the default albedo and emissivity values and changed Physiological Equivalent 
Temperature (PET) parameters to better represent more socially vulnerable bus riders (elderly, female). 
Following this, we input our SOLWEIG file into UMEP’s SOLWEIG analyzer, generating maps, GIFs 
(Graphics Interchange Format) and charts reflecting mean radiant temperature and thermal comfort.  
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4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 UHI Analysis 
Median LST values ranged from 58°F to 128°F (Figure 2A). LSTs in NYC were 6.4°F hotter on average than 
the rural reference during our study period. However, UHI factors were highly unequal across the city with 
per pixel values ranging from 42°F to -25°F, with a median value of 7.5°F (Figures 2B and 3). Some districts 
were up to 5.6 °F cooler on average than the rural reference, such as in Central Park, and others up to 13.3 °F 
hotter, such as in parts of Queens and the Bronx. The hottest city council districts are 17, 21, 12, 14, and 16; 
the hottest community districts are Mott Haven/Melrose, Belmont/East Tremont, Hunts Point/Longwood, 
Morris Park/Bronxdale, and Kingsbridge Heights/Bedford. These districts experience the UHI effect most 
severely (Figures 5 A and B). The distribution of heat is highly inequitable, with districts that are largely lower 
income and have higher percentages of residents of Color experiencing the greatest median LST and UHI 
values during our study period. 
  
A.​ ​                                                          B. 

 

 

Figure 2. (A). Median LST Values for NYC. Dark red pixels indicate higher LST, light yellow pixels indicate 
lower LST. (B.) UHI Factor of Difference per pixel in NYC. Dark red pixels indicate high UHI, light yellow 

pixels indicate no UHI effect, blue pixels indicate cooling effect.  
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Figure 3. The Distribution of UHI Factor Values. Median is plotted in purple. 

 

 

 

A.​                                                                       B. 

 

Figure 5. (A.) Average UHI Factor per City Council District. (B.) Average UHI Factor per Community Board 
District. 

 

4.1.2 Principal Component Analysis and Heat Vulnerability Analysis 
We ran three PCAs, creating one principal component each based on the demographic, environmental and 
transportation related variables established in 3.2.2. We made bivariate choropleth maps of these variables 
with LST. An example is shown in Figure 6A below. In this map we see districts in low vulnerability in the 
Bronx and districts with high vulnerability in Manhattan. Both observations are the opposite of what we 
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expect based on the literature. Upon further analysis and discussions with our partners, we decided to modify 
our analysis to better represent patterns of vulnerability in NYC. 

 

Figure 6. (A.) Bivariate Choropleth Map of Average LST and the Social Vulnerability Index. (B.) Bivariate 
Choropleth Map of Average LST and Average Median Income. 

Based on these discussions, for each principal component from each run of the PCA, we selected the variable 
that explained the most variability in the data. Average median income, average canopy cover and percent of 
people that commute to work by bus were selected and explained 84%, 83% and 72% of the variability from 
the demographic, environmental and transportation PCAs, respectively. After aggregating these variables 
from the census tract level to the community district level, the variables were mapped in ArcGIS Pro. Based 
on the assumption that lower income populations are more vulnerable to heat, we find that the most 
vulnerable populations are in the Bronx and the least vulnerable populations are in Manhattan (Figure 7). 
Also based on a similar assumption, the greater commuters to work by bus are located in the Bronx and 
Staten Island and represent vulnerable populations in terms of transportation (Figure B2). In an opposite 
pattern, lower canopy cover represents higher vulnerability to heat and these areas are located in Manhattan 
and Brooklyn (Figure B1).    

10 
 



 
   
 

 

Figure 7. Choropleth map of the Average Median Household Income per Community District. 

To further demonstrate the relationship between vulnerable populations and land surface temperature, we 
created bivariate choropleth maps of the three selected variables per community district. Here, we focus on 
the most vulnerable districts and those that experience higher land surface temperatures. For average median 
income these vulnerable districts are mainly located in the Bronx and the least vulnerable populations are in 
Staten Island and Manhattan. This pattern also applies to the relationship between bus commuters to work 
and LST (Figure C2). The most vulnerable districts in terms of canopy cover are located in sections of 
Queens, Brooklyn and the Bronx (Figure C1). 

4.1.3 Identifying High Vulnerability Bus Stops and Routes 
By compiling layers for bus stops in the 90th percentile of UHI factor, bus stops within the 10th percentile of 
TPI, unsheltered bus stops and bus stops with D or F report cards, we were able to identify which stops 
included all 4 vulnerability criteria and select five high vulnerability study stops (Figure 8). We selected one 
stop for each borough: Halleck St/Spofford Av off of the Bx6/Bx6+ in the Bronx, 60 St/16 Av off of the B9 
in Brooklyn, Merrymount St/Travis Av off of the S61/S91 in Staten Island, Junction Bl/37 Av in Queens off 
of the Q72 and E 128 St/3 Av off of the M125 in Manhattan. Additionally, we identified the routes with the 
highest UHI factor across the entirety of the route (Figure 9). The five routes with the highest UHI factor 
were: BX41/BX41+, Q18, Q66, Q101, Q102. Four out of five routes were in Queens, which makes sense as these 
routes through the some of the City Council Districts with the highest UHI factors, as identified in Figure 5A. 
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Figure 8. High vulnerability stops for UHI factor, shelter, TPI and bus report card and identified study spots 

that fit all 4 criteria. 
 

 
Figure 9. Bus routes by UHI factor of difference averaged across their entire line. 

 
4.1.4 Modeling High Vulnerability Bus Stops    
SOLWEIG modeling and post processing in SOLWEIG Analyzer for each stop resulted in maps that 
illuminate how each stop experiences heat throughout the day (Figure 10). Figure 11 highlights where existing 
shade infrastructure helps as well as where future shade infrastructure is sorely needed. Additionally, 
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SOLWEIG modeling underscores how urban heat affects bus riders throughout both day and night (Figure 
12). Figures for the other study stops can be found in Appendix D. Some study spots chosen did not 
exemplify heat exposure as we had anticipated, pointing to the need for further nuance in our transit 
modeling methodology. 
 

 
Figure 10. Percent of day each pixel in Halleck St/Spofford Av Bus Stop was above 55 degrees Celsius TMRT. 

 

 
Figure 11. Average Daytime Mean TMRT in Celsius for Halleck St/Spofford Av Bus Stop.  

13 
 



 
   
 

 
Figure 12. Universal Thermal Comfort Index for Halleck St/Spofford Av Bus Stop in Celsius. 

 
4.1.5 Limitations & Uncertainties  
While vulnerability indices can be invaluable tools for providing an overarching picture of issues like urban 
heat exposure, we acknowledge the shortcomings inherent to aggregating data and the ensuing loss of 
important nuance that comes with it (Corburn, 2009). As mentioned previously, ISS ECOSTRESS data was 
patchy and unusable for our study area and study period, reducing the ability for our modeling to include 
nighttime urban heat. Regarding the vulnerability index, we address limitations in our understanding of the 
underlying social, transportation and environmental factors that may affect the PCA and our interpretation of 
the results. Additionally, metrics for identifying vulnerable stops were rudimentary, being limited both by time 
and expertise in processing and analyzing transit data. Measures of bus wait time and bus bunching could 
have been more comprehensive in our analysis, as the Bus Turnaround Coalition’s Bus Report Card did not 
give an exact value and had missing data for some routes. Finally, our lack of expertise in using SOLWEIG 
led us to use base values for certain metrics, influencing the quality and nuance of the model.  
 
4.2 Future Work 
Given the difficulty and uncertainty with assessing vulnerability, future work should focus on determining 
why we see our given results and if the results are reversed as hypothesized. Refining the variables that are 
used in the analysis could aid in the optimization of the PCA. It would also be helpful to explore other 
methods of creating vulnerability indices to compare for accuracy. Further investigation into the errors that 
arose from capturing ECOSTRESS data could be helpful for future analyses of LST in NYC. Additionally, 
further analysis using SOLWEIG could aid TA in identifying stops and routes to focus on in their advocacy. 
 
5. Conclusions 
Using Landsat 8 TIRS and Landsat 9 TIRS-2 NASA Earth observation data, we determined the hottest 
community board and city council districts in NYC based on LST and UHI factors. Landsat imagery proved 
to be a useful data source for the creation of UHI anomaly rasters in comparison with the rural reference due 
to its spatial and temporal resolution. We attempted to create an index of vulnerable districts in NYC, 
however, the preliminary results might not accurately reflect the patterns of public transit, socioeconomic and 
environmental vulnerabilities in the city. These unexpected results from the analysis highlight the complexity 
of vulnerability indices in their creation and how they are interpreted. The results we were able to obtain from 
the vulnerability analysis using raw data demonstrate that vulnerable populations in the Bronx have the 
highest risk of heat exposure. Through basic analysis, we determined vulnerable bus stops and routes within 
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the city, which aligned with existing social vulnerabilities. We then were able to model thermal comfort at 
these vulnerable stops using SOLWEIG, highlighting the importance of shade infrastructure and transit 
amenities in mitigating urban heat creating to visualize what community members are already experiencing: 
 

Thankfully the bus stops near me have shelters. Although they protect you from the rain, they offer 
no shade—good for the winter, but bad for the summer. As a result, I have to stand behind the 
shelter or under a big nearby tree. Which means I don't have access to seating and I have to remain 
vigilant to make sure the bus driver sees me and doesn't skip the stop. I'm glad that summertime heat 
is being looked into more because it's a serious issue for bus riders. 
Samuelito, Southeast Queens 
 

With further refinement, these results can support TA’s advocacy for cooling interventions in the most heat 
vulnerable locations in the city through their Spatial Equity NYC dashboard or as part of their 25x25 
campaign. 
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7. Glossary 
 
American Community Survey (ACS) - US Census Bureau demographics survey, providing more regularly 
gathered data than the 10-year census  
Digital Elevation Model (DEM) - raster of earth’s surface (does not include trees, buildings or anything 
besides topography)  
Digital Surface Model (DSM) - raster of earth surface and trees, buildings and any other natural or artificial 
features  
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
GDAL – translator library in QGIS used for processing raster and vector data  
General Transit Specification Feed (GTFS) - Real time and static transit data published by public 
transportation agencies  
Land Surface Temperature (LST) - temperature of earth’s surface as measured by earth observations such 
as Landsat 8 and Landsat 9  
Mean Radiant Temperature (TMRT)- measure of the radiant heat felt by a human by their surroundings. It 
is related to thermal comfort and provides a more accurate picture of felt experience.  
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Particulate Matter 2.5 (PM2.5) - Tiny particles in the air that are less than 2.5 microns in width which can 
cause serious respiratory damage.  
Physiological Equivalent Temperature (PET) - Thermal comfort index based on a model of human 
energy balance  
Principal Component Analysis (PCA) - mathematical method of reducing the number of variables a data 
set has by grouping variables that correlate with each other and that explain most of the variability in the data. 
QGIS – free and publicly available geographic information system software, used for processing vector and 
raster geographic data  
Redlining – A practice of denying buyers housing and banks loans from certain neighborhoods as based on 
Home Owner’s Loan Corporation’s racist neighborhood ranking system 
SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry model) - Model that simulates 
TMRT in complex urban settings, providing modeling of thermal comfort, shade and other metrics of heat.  
Transit Proximity Index (TPI) - number of other public transportation options (subway stops, ferry stops, 
other bus stops) within a 5-minute walking distance (0.25 mi) for each bus stop.  
Universal Thermal Comfort Index (UTCI) - Thermal comfort index based on wind, air temperature, 
relative humidity and TMRT  
Urban Heat Island (UHI) - The phenomenon of urbanized spaces experiencing heat more intensely than 
their exurban or rural counterparts 
Urban Multi-scale Environmental Predictor (UMEP) - Series of tools for analyzing climate data, 
including SOLWEIG  
Urban Renewal – A tool by local governments to ‘revitalize’ parts of cities that are poorer and/or 
minority-majority; uprooting and displacing communities of color  
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9. Appendices 
 

Appendix A: Maps included in high vulnerability bus stop analysis 

 

 

Figure A1. NYC Bus stops by our generated UHI factor of difference. 
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Figure A2. Bus stops by the number of public transportation stops (subways, other buses, ferries) within a 
5-minute walking distance (0.25 miles). 
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Figure A3. NYC bus stops with and without shelters. 
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Figure A4. NYC bus stops by Bus Turnaround Coalition report card grade. 
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Appendix B: Additional Choropleth Maps 

 

Figure B1. Choropleth map of the Average Tree Canopy Cover per Census Tract. 

  

Figure B2. Choropleth map of the Percent of Commuters to Work by Bus per Census Tract. 
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Appendix C: Additional Bivariate Choropleth Maps 

 

Figure C1. Bivariate Choropleth Map of Average LST and Average Canopy Cover. 

 

 

Figure C2. Bivariate Choropleth Map of Average LST and the Percent of Commuters to Work by Bus. 
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Appendix D: Additional SOLWEIG processing for each stop 

 

Figure D1. Percent of day each pixel in Junction Bl/37 Av Bus Stop was above 55 degrees Celsius TMRT. 
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Figure D2. Average Daytime Mean TMRT in Celsius for Junction Bl/37 Av Bus Stop. 
 

 
 

Figure D3. Universal Thermal Comfort Index for Junction Bl/37 Av Bus Stop in Celsius. 
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Figure D4. Percent of day each pixel in 60 St/16 Av Bus Stop was above 55 degrees Celsius TMRT. 
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Figure D5. Average Daytime Mean TMRT in Celsius for 60 St/16 Av Bus Stop. 

 
 

 
 

Figure D6. Universal Thermal Comfort Index for 60 St/16 Av Bus Stop in Celsius. 
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Figure D7. Percent of day each pixel in Merrymount St/Travis Av Bus Stop was above 55 degrees Celsius 

TMRT. 
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Figure D8. Average Daytime Mean TMRT in Celsius for Merrymount St/Travis Av Bus Stop. 
 

 
Figure D9. Universal Thermal Comfort Index for Merrymount St/Travis Av Bus Stop in Celsius. 

 

 
Figure D10. Percent of day each pixel in 128 St/3 Av Bus Stop was above 55 degrees Celsius TMRT. 
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Figure D11. Average Daytime Mean TMRT in Celsius for 128 St/3 Av Bus Stop. 
 

 
Figure D12. Universal Thermal Comfort Index for 128 St/3 Av Bus Stop in Celsius. 

 

33 
 


	1. Abstract  
	2. Introduction 
	The Urban Heat Island (UHI) effect is the phenomenon in which urban areas experience higher temperatures than surrounding rural and exurban areas due to the higher concentration of solar radiation-absorbing impervious surfaces (roads and buildings) and the lack of green space and canopy cover (EPA, n.d.). Exposure to extreme heat can lead to dangerous health effects including heat stroke, kidney disease, cardiovascular disease, and even death, especially when accompanied by air pollutants such as PM2.5 or surface-level ozone (Anenberg et al., 2020; Ebi et al., 2021). The UHI effect has serious implications on transportation accessibility as people are exposed to extreme heat while walking to and waiting for buses. Shade infrastructure, such as shelters and trees, can significantly reduce the impact of urban heat around bus stops (Park et al., 2021). However, urban greening can also have a gentrifying effect on minority and poor neighborhoods in the absence of policy intervention (Cool Neighborhoods NYC, n.d.;

	3. Methodology 
	4. Results & Discussion 
	 
	5. Conclusions 
	 
	6. Acknowledgments 
	 
	7. Glossary 
	8. References 
	9. Appendices 

