Productions ou réponses attendues du candidat

PartieA: Conjecture à l'aide du logiciel GeoGebra

1.Construction du curseur *k*.

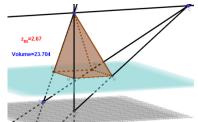
2.

- Construction des points A, B et C
- Construction du point M
- Construction du plan (P)
- Construction des points N, R et S
- Construction de la pyramide BMNRS

3.Lorsque le curseur k = 2, il semble que V=22,5

Lorsque le curseur k = 4, il semble que V = 20

4.Lavaleur maximale du volume V semble V=23,7 lorsque k=2,67



Partie B: Démonstration

1. BM =
$$8 - k$$

$$\frac{\text{BM}}{\text{2. a)}} = \frac{\text{SM}}{\text{AO}} \Leftrightarrow \frac{8-k}{8} = \frac{\text{SM}}{6}. \text{ Donc SM} = \frac{3}{4}(-k+8) = 6 - \frac{3}{4}k$$

$$\frac{OM}{OB} = \frac{RM}{BC} \Leftrightarrow \frac{k}{8} = \frac{RM}{10}$$
. Donc $RM = \frac{5}{4}k$

$$V(k) = \frac{1}{3} \times A_{MNRS} \times BM = \frac{1}{3} \times SM \times RM \times BM = \frac{1}{3} \times \frac{3}{4} (-k+8) \times \frac{5}{4} k \times (-k+8)$$

3. a)
$$V(k) = \frac{5}{16}k(-k+8)^2 = \frac{5}{16}k^3 - 5k^2 + 20k$$

b)

On a
$$V'(k) = \frac{15}{16}k^2 - 10k + 20$$

k	0	$\frac{8}{3}$		8
V'(k)	+	0	-	0
V(k)	0	$\frac{640}{27}$		~ ₀

V =
$$\frac{640}{27} \approx 23.7$$
 lorsque valeur du curseur k est $k = \frac{8}{3}$

La valeur du volume maximal est