
Tab 1

FLIP-524 - CloudWatch Metric Sink
Connector

Discussion
thread

https://lists.apache.org/thread/9yyx5oxsy5hf8
nbhds4do6tmm5bchh18

Vote thread

TBC

Author Daren Wong

JIRA

https://issues.apache.org/jira/browse/FLINK-
37688

Release

TBC

Motivation
There is demand within the community for an Amazon CloudWatch Metric Sink connector. This
sink will allow users to write custom metrics to their CloudWatch. An example use case could be
that the user might want to consume a stream of metrics, transform/reduce the cardinality of the
metrics space, and finally publish it to CloudWatch as their metrics database.

Public Interfaces

https://lists.apache.org/thread/9yyx5oxsy5hf8nbhds4do6tmm5bchh18
https://lists.apache.org/thread/9yyx5oxsy5hf8nbhds4do6tmm5bchh18

●​ Sink:
○​ FLIP-143: Unified Sink API
○​ FLIP-191: SinkV2
○​ FLIP-171: Async Sink

Proposed Changes
We are putting forward a proposal to develop a submodule called "flink-connector-cloudwatch"
within the existing framework of "flink-connector-aws" By integrating it into "flink-connector-aws,"
we can leverage the authentication and essential utilities already present in the AWS-specific
modules. This will streamline the development process and enable direct utilization of these
resources.

Below are the design considerations for the new sink:

●​ Sink
●​ Supports both Bounded (Batch) and Unbounded (Streaming)
●​ Usable in both DataStream and Table API/SQL

Data Input Format
CloudWatch PutMetricRequest requires a structured EntityMetricData or MetricDatum
object as input. Therefore, the connector will provide an ElementConverter with generic input
type but a static output type. The static output type will be called MetricWriteRequest, which
will contain all the properties required to build a MetricDatum object and can be simply
extended with an Entity field to support EntityMetricData in the future.

For example, MetricWriteRequest can be defined as follows:

@PublicEvolving​
public class MetricWriteRequest implements Serializable {​
 private final String metricName; // Required​
 private final Dimension[] dimensions; // Optional​
 private final double[] values; // Optional​
 private final double[] counts; // Optional ​
 private final Instant timestamp; // Optional​
 private final String unit; // Optional​
 private final int storageResolution; // Optional​
 private final double statisticMax; // Optional​
 private final double statisticMin; // Optional​

https://github.com/apache/flink-connector-aws

 private final double statisticSum; // Optional​
 private final double statisticCount; // Optional

Users can provide their custom ElementConverter to convert from user defined input type to
MetricWriteRequest. For example,
CloudWatchSink.<Sample>builder()​
 .setNamespace("CloudWatchSinkTest")​
 .setCloudWatchClientProperties(sinkProperties)​
 .setCloudWatchSinkElementConverter(new MetricWriteRequestElementConverter<>() {​
 @Override​
 public MetricWriteRequest apply(Sample sample, SinkWriter.Context context) {​
 return MetricWriteRequest.builder()​
 .withMetricName(sample.getMetricName())​
 .addValue(sample.getValue())​
 .addCount(sample.getCount())​
 .withTimestamp(Instant.ofEpochMilli(sample.getTimestamp()))​
 .build();​
 }​
 })​
 .build();

Sink Writer Design
Batch Writing to CloudWatchAsyncClient - A list of MetricWriteRequest will be batched
based on maxBatchSize which is then submitted as a PutMetricDataRequest.

Example Sink Writer submitRequestEntries:

 @Override​
 protected void submitRequestEntries(​
 List<MetricWriteRequest> entries,

ResultHandler<MetricWriteRequest> resultHandler) {​
​
 final PutMetricDataRequest putMetricDataRequest =​
 PutMetricDataRequest.builder()​
 .namespace(namespace)​
 .metricData(getMetricData(entries))

 .strictEntityValidation(true)​
 .build();​
​
 CompletableFuture<PutMetricDataResponse> future =​

clientProvider.getClient().putMetricData(putMetricDataRequest);

Sink Writer Configuration/Limitation
Note that CloudWatch PutMetricDataRequest has some constraints and will be taken into
consideration in connector’s configurations as follows:

●​ Maximum size per CW PutMetricDataRequest is 1MB → maxBatchSizeInBytes
cannot be more than 1 MB

●​ Maximum number of MetricDatum per CW PutMetricDataRequest is 1000 →
maxBatchSize cannot be more than 1000

●​ Maximum 150 unique values in MetricDatum.Values → maxRecordSizeInBytes
cannot be more than 150 Bytes (assuming each 1 value size is 1 byte)

●​ CloudWatch API uses Java double, but it doesn't support Double.NaN and → Set
strictEntityValidation to true

●​ MetricDatum Timestamp limitations (up to 2 weeks in the past and up to 2 hours into the
future) → MetricWriteRequest will have validation against this upon creation

●​ Out of data ordering is accepted by CloudWatch.
●​ CloudWatchSink will be configured per namespace, and each Sink can put metric of one

of multiple metricName, this is aligned with CloudWatch PutMetricDataRequest API as
well.

Sink Writer Error Handling
CloudWatch PutMetricDataRequest does not support partial failure. If the batch contains one
MetricDatum poison pill, the request will fail and be handled as a fully failed request. In
addition, CloudWatch rejects any metric that’s more than 2 weeks old, we will add a
configurable option for users to determine the error handling behavior of either: 1) drop the
records OR 2) trigger a job failure OR 3) keep retrying the batch.

Example Sink Usage
A sample using the connector is shown below:

CloudWatchSink.builder()​
 .setNamespace("CloudWatchSinkTestNamespace")

 .setElementConverter(new SampleMetricWriteRequestElementConverter())​
 .setCloudWatchClientProperties(sinkProperties)​
 .build();

TableAPI Design
To convert a RowData to MetricWriteRequest, users will have to define configuration to
identify column names associated with the cloudwatch namespace, metric name, dimensions,
etc. A sample configuration can be seen below:

CREATE TABLE CloudWatchTable (​
 `cw_metric_name` STRING,​
 `cw_dim` STRING,​
 `cw_value` BIGINT,​
 `cw_count` BIGINT​
)​
WITH (​
 'connector' = 'cloudwatch',​
 'aws.region' = 'us-east-1',​
 'metric.namespace' = 'cw_connector_namespace',​
 'metric.name.key' = 'cw_metric_name',​
 'metric.dimension.keys' = 'cw_dim',​
 'metric.value.key' = 'cw_value',​
 'metric.count.key' = 'cw_count'​
);

User can then insert values into the sink, for example:

INSERT INTO CloudWatchTable VALUES ("cpu", "sensor_1", 98, 1);​
INSERT INTO CloudWatchTable VALUES ("memory", "sensor_1", 160, 1);

TableAPI Configuration List

- metric.namespace // Required ​
- metric.name.key // Optional​
- metric.dimension.keys // Optional​
- metric.value.key // Optional​
- metric.count.key // Optional​
- metric.unit.key // Optional​
- metric.storage-resolution.key // Optional​
- metric.timestamp.key // Optional​
- metric.statistic.max.key // Optional​
- metric.statistic.min.key // Optional​
- metric.statistic.sum.key // Optional​
- metric.statistic.sample-count.key // Optional​
- sink.invalid-metric.retry-mode // Optional

At a high level, there are 3 main types of key:

-​ metric.namespace - Required in every CW PutMetricDataRequest
-​ metric.X.key - Column key identifier to map the Table column to the respective fields

in the CW PutMetricDataRequest. For example, “metric.timestamp.key = my_timestamp”
means the TableSink will look for column name/field “my_timestamp” to extract it’s value
to be used as timestamp in CW PutMetricDataRequest.

-​ sink.invalid-metric.retry-mode - Error handling behavior when an Invalid
record is present, i.e invalid timestamp. 3 retry mode options are: 1) drop the records OR
2) trigger a job failure OR 3) keep retrying the batch.

Semantics
CloudWatch currently does not support two phase commits and hence this sink will provide at
least once guarantee.

Compatibility, Deprecation, and Migration
Plan
The connectors are compatible with CloudWatch. With respect to Flink, this is a new feature, no
compatibility, deprecation and migration plan is expected.

Test Plan
We will add the following tests:

●​ Unit tests
●​ Integration tests that perform end to end tests against a CloudWatch localstack container

Rejected Alternatives
None

	Tab 1
	FLIP-524 - CloudWatch Metric Sink Connector
	Motivation
	Public Interfaces
	Proposed Changes
	Compatibility, Deprecation, and Migration Plan
	Test Plan
	Rejected Alternatives

