Manuale utente decoder DAC-A110 versione 1.0

DAC-A110 ver. 1.0 Pagina 2/15

ŭ

Sommario

Sommario	2
Introduzione Caratteristiche dell'hardware Caratteristiche del firmware Attenzione: accorgimenti / azioni da evitare	3 3 3
Connessione del decoder Ingresso DCC Uscite accessorio Alimentazione	5 5 5 5
LED e tasto di programmazione semplificata	8
Uso del decoder Cambio indirizzo Reset del decoder Durata di attivazione delle uscite Modalita' di attivazione delle uscite Lettura e scrittura delle CV Altre funzioni Gestione acknowledge	9 9 10 10 11 12 12
Lista delle variabili di configurazione (CV)	13
Appendici Bit e Bytes	14

DAC-A110 ver. 1.0 Pagina 3/15

DAO-ATTO VCI. 1.0

Introduzione

Questo decoder accessori e' stato progettato per azionare gli accessori generici (scambi a doppia bobina oppure scambi a corsa lenta), in corrente alternata di bassa e media potenza sui plastici comandati in DCC seguendo lo standard NMRA. Di seguito sono elencate le caratteristiche principali:

Caratteristiche dell'hardware

- Compatibile con un segnale DCC di ampiezza tra 5V e 24V
- Incorpora 8 uscite accessorio indipendenti e 4 punti di alimentazione "comuni", che permettono di collegare 4 motori per scambi a doppia bobina.
- Corrente totale in uscita dal decoder di 4A continui, 8A impulsivi (<1 sec)
- Corrente in uscita da ogni uscita 2A continui e 4A impulsivi (<1 sec)
- Gestione dell' acknowledge per rilettura delle CV con impulso da 100mA
- PCB a doppio strato con montaggio dei componenti in tecnologia SMD
- Connettore a 12 poli a vite per le uscite, a 2 poli per l'alimentazione, a 2 poli per il segnale DCC (tutti con passo 5mm)
- Tasto + LED per programmare l'indirizzo senza programmare CV e per resettare il decoder al suo stato iniziale
- Dimensioni 80 x 60 x 15mm

Caratteristiche del firmware

- Decoder per accessori a 8 uscite, indirizzo decoder tra 1 e 512 (che corrisponde ad un indirizzo accessorio tra 1 e 2048), compatibile DCC con standard NMRA
- Programmazione semplificata per mezzo di 11 CV
- Durata dell'attivazione delle 4 coppie di uscite configurabile attraverso le CV3-CV6
- Modo di attivazione e disattivazione dell'accessorio configurabile attraverso le CV10 e
 CV20 (modalita' "LUCE" e modalita' "SCAMBIO")
- Lunghezza dell'impulso di acknowledge configurabile

DAC-A110 ver. 1.0 Pagina 4/15

2710 71110 Vol. 110

Attenzione: accorgimenti / azioni da evitare

 Questo decoder va usato esclusivamente per la gestione accessori sui plastici ferroviari, ogni altro impiego non e' consigliato/ammesso

- Eseguire ogni connessione e cablaggio con l'alimentazione e il segnale DCC disconnessi
- Evitare ogni forza meccanica e pressione sul decoder
- Assicurarsi che nessuna parte metallica vada a toccare il decoder oppure un filo non isolato connesso al decoder.
- Realizzare le connessioni elettriche secondo lo schema riportato in questo manuale e ricontrollarle prima di dare tensione al plastico: connessioni errate possono danneggiare il decoder.
- Una volta installato sul plastico controllare anche l'integrita' dei fili e la bonta' delle saldature.
- Eseguire il primo test sul binario di programmazione o con una centralina capace di erogare una corrente di lavoro limitata.
- Non esporre all'umidità o direttamente all'acqua.

DAC-A110 ver. 1.0 Pagina 5/15

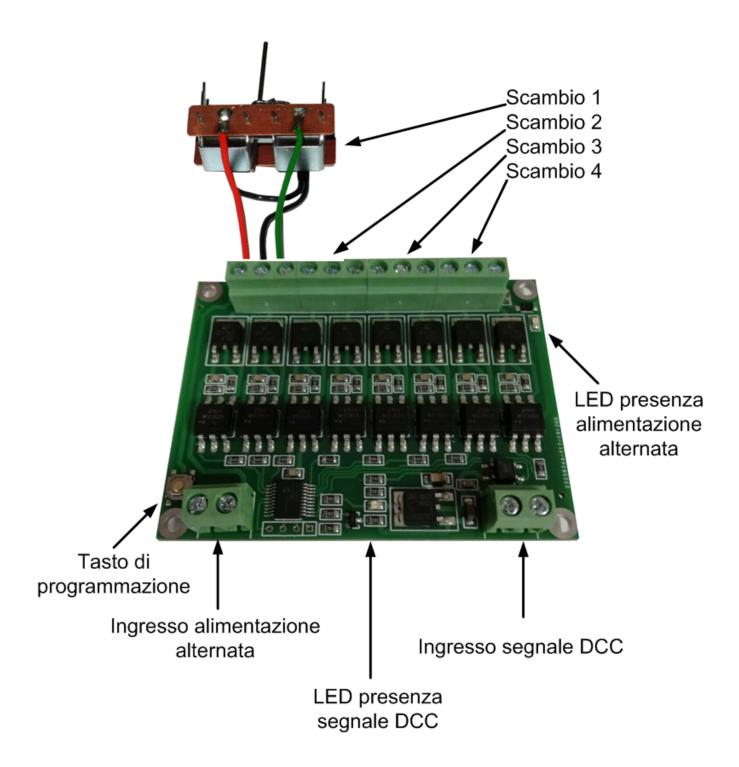
Connessione del decoder

Le connessioni del decoder sono di 3 tipi:

Ingresso DCC

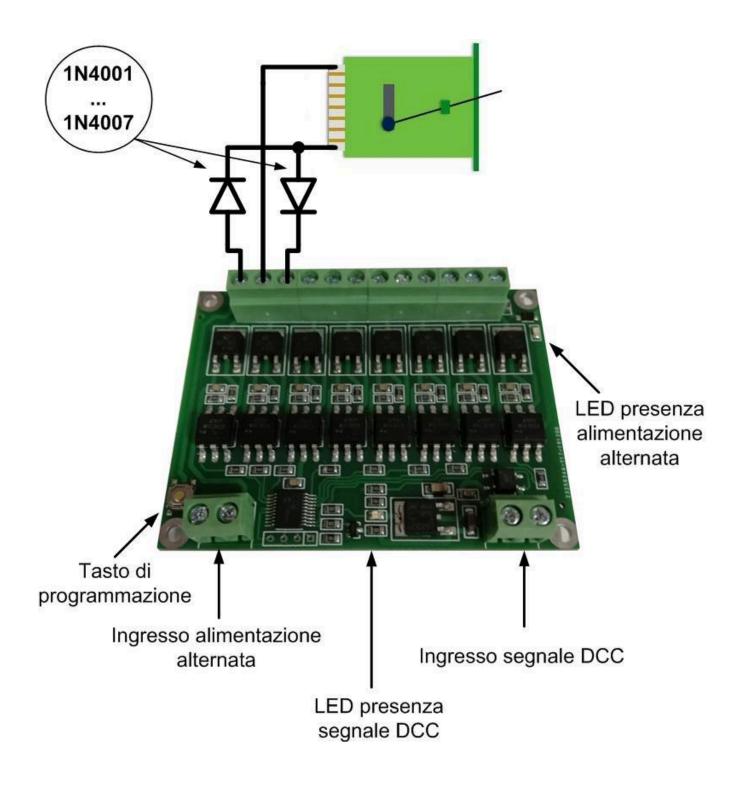
Le connessioni al segnale DCC sono realizzate attraverso il connettore a 2 poli con morsetti a vite indicato con "**DCC**" nella figura di pagina seguente. La polarita' o verso di connessione dei fili, essendo il segnale DCC una tensione alternata, non e' importante. L'assorbimento di corrente sull'ingresso DCC e' di circa 10mA.

Uscite accessorio


Le uscite accessorio sono collegate al connettore a 12 poli con morsetti a vite indicato con "USCITE" nella figura di pagina seguente. Per la connessione dei singoli accessori si vedano le pagine seguenti.

Alimentazione

L'alimentazione alternata e' connessa al decoder attraverso il connettore a 2 poli con morsetti a vite indicato con "**POWER**" nella figura della pagina seguente. Non e' importante la polarita' della connessione (e' una tensione alternata) ma deve essere rispettato il valore massimo della tensione sul decoder di 24VAC.


DAC-A110 ver. 1.0 Pagina 6/15

Nella figura di seguito e' riportato uno schema di connessione del decoder. La connessione degli accessori e' fatta a 4 gruppi di 3 contatti a vite. Il primo contatto andra' connesso alla prima bobina (filo rosso nella foto) il centrale al filo comune (filo nero nella foto) e il terzo alla seconda bobina (filo verde nella foto). Nel caso si voglia connettere una lampadina si puo' fare tra il filo comune e una delle due uscite.

DAC-A110 ver. 1.0 Pagina 7/15

Un'altro possibile collegamento, a un motore lento (tipo Tortoise o simile) e' riportato nella figura seguente. Da notare i due diodi da aggiungere esternamente (1N4001 ... 1N4007 o equivalenti) per selezionare la semionda positiva o negativa in uscita dal decoder. Per pilotare correttamente i motori lenti sarà necessario incrementare il valore delle CV3...CV6 fino alla durata del movimento completo (di solito 3-4 secondi, quindi CV3,CV4,CV5,CV6 = 30..40)

DAC-A110 ver. 1.0 Pagina 8/15

LED e tasto di programmazione semplificata

Il LED presente sul decoder e' utile per avere informazioni aggiuntive sullo stato del decoder secondo questa logica:

- All'accensione del decoder e' spento per alcuni istanti (avvio del decoder) e poi si accende in maniera stabile a segnalare il corretto funzionamento del microcontrollore.
- Nel momento che il microprocessore decodifica un pacchetto DCC indirizzato al decoder stesso si spegne per poche centinaia di millisecondi per segnalare l'arrivo di un comando valido
- Alla pressione del tasto (programmazione indirizzo) inizia a lampeggiare e smette alla nuova pressione del tasto (programmazione abortita) oppure all'arrivo di un comando accessori che memorizza il nuovo indirizzo.
- Alla pressione prolungata (oltre 5 secondi) del tasto, smette di lampeggiare e si spegne durante tutto il periodo di re-inizializzazione delle CV. Occorre quindi spegnere il decoder e riaccenderlo per rendere effettive tutte le modifiche.

DAC-A110 ver. 1.0 Pagina 9/15

Uso del decoder

Cambio indirizzo

CV coinvolte nella funzione: CV1, CV9.

L'indirizzo di default e' 1.

L'indirizzo del decoder puo' essere un numero compreso tra 1 e 511 e permette alla centralina di inviare dei comandi specifici (pacchetti per l'attivazione degli accessori) per il decoder stesso. L'indirizzo del decoder si imposta in questo modo:

- Dividere il valore dell'indirizzo per 64
- 2. Considerare la sola parte intera del risultato e impostarlo nella CV9
- 3. Sottrarre all'indirizzo decoder originario il valore impostato nella CV9 moltiplicato per 64.
- 4. Impostare il risultato del punto 3. nella CV1

Ad esempio:

Si vuole impostare nel decoder l'indirizzo 200.

- 1. Si calcola 200 / 64 = 3,125.
- 2. Si considera solo la parte intera, guindi si imposta CV9=3.
- 3. Si calcola 200 $(3 \times 64) = 8$
- 4. Si imposta CV1=8.

!!Attenzione!! Esiste una differenza tra indirizzo decoder e indirizzo accessorio. L'indirizzo che si imposta nelle CV1 e CV9 del decoder viene di solito indicato come "indirizzo decoder". L'indirizzo che si imposta sulla centralina per azionare l'accessorio viene di solito indicato nei manuali come "indirizzo accessorio". Questi due indirizzi non coincidono dal momento che secondo lo standard NMRA ogni decoder (indirizzo decoder) puo' contenere fino a 4 accessori (indirizzi accessorio). A causa di questo fattore 4 di differenza tra i due indirizzi, l'indirizzo dei 4 accessori connessi ad un decoder sono calcolati come

- Indirizzo accessorio(1) = 1 + (Indirizzo decoder 1) x 4
- Indirizzo accessorio(2) = 2 + (Indirizzo decoder 1) x 4
- Indirizzo accessorio(3) = 3 + (Indirizzo decoder 1) x 4
- Indirizzo accessorio(4) = 4 + (Indirizzo decoder 1) x 4

Esempio: per comandare con la centralina Intellibox® uno scambio a doppia bobina collegato alle uscite 1 e 2 del decoder di indirizzo 200 (CV9=3 e CV1=8) si dovra' impostare sul display il numero 797 e usare i tasti verde e rosso sotto i numeri "4" e "1" per far commutare lo scambio su deviata o corretto tracciato.

DAC-A110 ver. 1.0 Pagina 10/15

Esempio: per comandare con la centralina Intellibox® uno scambio a doppia bobina collegato alle uscite 1 e 2 del decoder con i settaggi di default (CV1=1, CV9=0, indirizzo decoder = 1) si dovra' impostare sul display il numero 1 e usare i tasti verde e rosso sotto i numeri "4" e "1" per far commutare lo scambio su deviata o corretto tracciato.

Il ROCO Multimaus® non effettua il decremento di 1 dell'indirizzo decoder quindi per comandare l'indirizzo accessorio con il Multimaus® si dovra' usare il seguente schema:

- Indirizzo accessorio(1) = 1 + (Indirizzo decoder) x 4
- Indirizzo accessorio(2) = 2 + (Indirizzo decoder) x 4
- Indirizzo accessorio(3) = 3 + (Indirizzo decoder) x 4
- Indirizzo accessorio(4) = 4 + (Indirizzo decoder) x 4

Esempio: per comandare uno scambio a doppia bobina collegato alle uscite 1 e 2 del decoder di indirizzo 200 (CV9=3 e CV1=8) si dovra' impostare sul Multimaus® il numero S0801 e usare i tasti ai lati del pulsante "STOP" per far commutare lo scambio su deviata o corretto tracciato.

Esempio: Se si collega uno scambio a doppia bobina alle uscite 1 e 2 del decoder con i settaggi di default (CV1=1, CV9=0, indirizzo decoder = 1) per poterlo azionare si dovra' impostare sul Multimaus® il numero S0005 e usare i tasti ai lati del pulsante "STOP" per far commutare lo scambio su deviata o corretto tracciato.

Reset del decoder

CV coinvolte nella funzione: CV8.

Il reset del decoder ha lo scopo di ripristinare il valore di default di tutte le CV. Questa azione si puo' fare rapidamente scrivendo nella CV8 un valore diverso da 13 e spegnendo / riaccendendo il decoder.

Durata di attivazione delle uscite

CV coinvolte nella funzione: CV3, CV4, CV5, CV6.

La durata di attivazione delle uscite, a seguito dell'arrivo di un comando indirizzato ad un accessorio connesso al decoder si imposta nelle CV3, CV4, CV5 e CV6 che sono relative alle uscite 1 e 2 (CV3), 3 e 4 (CV4), 5 e 6 (CV5), 7 e 8 (CV6). Queste 4 CV contengono un numero tra 0 e 255 che moltiplicato per 100 indica quanti millisecondi l'uscita rimarra' attivata prima di tornare al suo stato di riposo. Impostare il numero 0 lascera' le uscite attive indefinitamente, impostare il numero 255 attivera' le uscite per 25.5 secondi.

DAC-A110 ver. 1.0 Pagina 11/15

Esempio: Collegare uno scambio a doppia bobina come da schema in foto. Impostare CV2=5 (uscita attiva 500ms) e CV10=1 (comando in modalita' "scambio"), CV1=1, CV9=0 (indirizzo 1). Il Multimaus® impostato sull'indirizzo accessorio S0005 permettera' di azionare lo scambio per 500 millisecondi ogni volta che si premera' uno dei due tasti con le frecce ai lati del pulsante STOP.

Modalita' di attivazione delle uscite

CV coinvolte nella funzione: CV10, CV20.

La CV10 controlla come l'utente puo' attivare e/o disattivare le uscite connesse agli accessori. Sono possibili 2 modalita':

- La modalita' "LUCE" impostabile con CV10=0 permette di attivare e disattivare sequenzialmente le uscite a pressioni successive dello stesso comando sulla centralina. Per essere interpretati come distinti, due comandi devono succedersi con un ritardo maggiore a quanto specificato nella CV20. Il valore della CV20 moltiplicato per 250 contiene il periodo di tempo minimo in millisecondi tra due comandi consecutivi in modalita' "LUCE". Questa modalita' si usa di solito quando gli accessori hanno un tempo di attivazione infinito (CV3, CV4, CV5, CV6 = 0) come ad esempio le luci sul plastico.
- La modalita' "SCAMBIO" (CV10=1) si usa principalmente con gli scambi comandabili attraverso 2 uscite connesse a 2 bobine che hanno la funzione di muovere l'ago in due posizioni diverse. Le uscite del decoder sono raggruppate in 4 coppie e attivando un'uscita si disattivera' automaticamente l'altra della coppia e viceversa. Questa modalita' si usa di solito quando gli accessori hanno un tempo di attivazione limitato (CV3, CV4, CV5, CV6 <> 0).

La CV20 contiene un tempo (moltiplicando il valore della CV per 250 si ottengono i millisecondi di questo ritardo) che permette di comandare l'attivazione e disattivazione di un accessorio con un solo comando. Come mai serve un ritardo? Quasi tutte le centraline inviano solo comandi di attivazione degli accessori e quindi fino a che l'utente tiene premuto il tasto della centralina questi comandi continuano ad arrivare al decoder, quando si rilascia il tasto la centralina non inviera' piu' questi comandi. Per poter comandare l'attivazione e disattivazione si deve implementare la seguente logica nel decoder:

- 1. Se arriva un comando di attivazione di un accessorio con l'accessorio disattivato, allora attivalo
- 2. Se arriva un comando di attivazione di un accessorio con l'accessorio gia' attivato, allora disattivalo.

Si capisce facilmente che in presenza di numerosi impulsi di attivazione l'accessorio si attiverebbe e disattiverebbe continuamente. Quindi la CV20 di fatto imposta il tempo entro il

DAC-A110 ver. 1.0 Pagina 12/15

·

quale 2 comandi di attivazione vengono considerati "uno solo" e viene associato ad una singola azione sul decoder (che sia di accensione o di spegnimento): raggruppare i comandi in questo modo implica che l'utente non potra' attivare e disattivare un accessorio piu' velocemente del tempo specificato nella CV, ma essendo una azione manuale o comunque per accessori che rimangono continuamente accesi (luci e altri effetti sul plastico come ad esempio fontane, piccoli automatismi..) di solito non e' una limitazione e quindi non e' necessario cambiare il valore di default (2 corrispondente a 500ms).

Lettura e scrittura delle CV

CV coinvolte nella funzione: Tutte.

Le CV del decoder possono essere lette e scritte usando la modalita' "direct" sia a bit che a byte come specificato dalle norme NMRA. Ogni volta che si programma una CV e' necessario fare un ciclo di spegnimento e riaccensione del decoder (se la centralina non lo fa gia' autonomamente) per permettere l'aggiornamento delle CV e dei modi operativi a loro legati.

Altre funzioni

CV coinvolte nella funzione: CV19.

Gestione acknowledge

L'impulso di acknowledge (necessario alla centralina per rileggere le CV) si ottiene con un assorbimento del decoder di una corrente di almeno 60 mA per 6 ms (standard NMRA). Il decoder genera questo assorbimento attivando un circuito interno che assorbe circa 100mA per il numero di millisecondi contenuti nella CV19 (default 6 millisecondi).

DAC-A110 ver. 1.0 Pagina 13/15

Lista delle variabili di configurazione (CV)

■ CV1 Parte meno significativa dell'indirizzo decoder (6 LSB). E' un valore tra 1 e 63 che combinato con la CV9 fornisce l'indirizzo completo del decoder: Indirizzo decoder = CV9 x 64 + CV1. Il valore di default della CV e' 1 (indirizzo decoder = 1).

- CV2 non implementata
- CV3 tempo di attivazione delle uscite 1 e 2. Il tempo di attivazione si calcola dal valore della CV moltiplicato per 100 ed e' espresso in millisecondi. Il valore di default e' 3 uguale ad un tempo di attivazione di 3 x 100 = 300 millisecondi. Il valore 0 attiva le uscite in maniera continua.
- CV4 tempo di attivazione delle uscite 3 e 4. Valore di default 3 (300 millisecondi).
- CV5 tempo di attivazione delle uscite 5 e 6. Valore di default 3 (300 millisecondi).
- CV6 tempo di attivazione delle uscite 7 e 8. Valore di default 3 (300 millisecondi).
- **CV7** Versione del Firmware (default 10 versione 1.0)
- CV8 Costruttore (default 13 decoder DIY). Scrivendo in questa CV un numero diverso da 13 e spegnendo / riaccendendo il decoder si avra' un reset di tutte le CV al valore di default.
- CV9 Parte piu' significativa dell'indirizzo decoder (3 MSB). E' un valore tra 0 e 7 che combinato con la CV1 fornisce l'indirizzo completo del decoder: Indirizzo decoder = CV9 x 64 + CV1. Il valore di default della CV e' 0 (indirizzo decoder = 1).
- CV10 Modo di attivazione delle uscite:
 - 0: modalita' "LUCE" ON/OFF uscita a tempo o con singolo comando della centralina
 - 1:modalita' "SCAMBIO" ON/OFF uscita a tempo o con comando dell'altra uscita accessorio
- CV11 ... CV18 non implementate
- CV19 Durata dell'impulso di acknowledge in millisecondi. Valore di default 6 = 6 millisecondi (standard NMRA).
- CV20 Ritardo minimo tra attivazioni e disattivazioni delle uscite in modalita' "LUCE". Il tempo in millisecondi si calcola dal valore della CV moltiplicandolo per 250. Valore di default 2 = 500ms.

DAC-A110 ver. 1.0 Pagina 14/15

Appendici

Bit e Bytes

Le variabili di configurazione dei decoder sono basate su numeri espressi a 8 bit (byte). I numeri binari a 8 bit sono così strutturati:

Bit #	Bit[7] (MSB)	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0] (LSB)
Valore	128	64	32	16	8	4	2	1
Esempio	1	0	0	1	0	1	0	0

Il calcolo del numero da impostare nella CV a partire dai diversi bit a 0/1 e' ottenuto sommando i valori dei bit a "1" e trascurando quelli a 0. Nel caso in figura, il valore del numero rappresentato; sara' 128+16+4=148.

Viceversa se da un numero decimale si vuole trovare la sua rappresentazione binaria si dovra' operare come segue:

- 1. Il numero da convertire e' maggiore o uguale a 128? Se si, scrivi 1 e sottrai 128 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.
 - Esempio: 148 >= 128? si, scrivo 1 e rimane 20.
- 2. Il numero da convertire e' maggiore o uguale a 64? Se si, scrivi 1 e sottrai 64 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.
 - Esempio: $20 \ge 64$? no, scrivo **0** e rimane 20.
- 3. Il numero da convertire e' maggiore o uguale a 32? Se si, scrivi 1 e sottrai 32 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.
 - Esempio: $20 \ge 32$? no, scrivo **0** e rimane 20.
- 4. Il numero da convertire e' maggiore o uguale a 16? Se si, scrivi 1 e sottrai 16 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.
 - Esempio: 20 >= 16? si, scrivo 1 e rimane 4.
- 5. Il numero da convertire e' maggiore o uguale a 8? Se si, scrivi 1 e sottrai 8 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.

DAC-A110 ver. 1.0 Pagina 15/15

6. Il numero da convertire e' maggiore o uguale a 4? Se si, scrivi 1 e sottrai 4 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.

Esempio: $4 \ge 4$? si, scrivo **1** e rimane 0.

Esempio: $4 \ge 8$? no, scrivo **0** e rimane 4.

7. Il numero da convertire e' maggiore o uguale a 2? Se si, scrivi 1 e sottrai 2 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.

Esempio: $0 \ge 2$? no, scrivo $\mathbf{0}$ e rimane 0.

8. Il numero da convertire e' maggiore o uguale a 1? Se si, scrivi 1 e sottrai 1 al numero da convertire altrimenti scrivi 0 e lascia il numero invariato.

Esempio: $0 \ge 1$? no, scrivo $\mathbf{0}$ e rimane 0.

Quindi la rappresentazione binaria del numero 148 decimale e' 1001.0100

N.B. In questo manuale si usa la convenzione con bit[0] = LSB (bit meno significativo del byte) e bit[7] = MSB (bit piu' significativo del byte).