

Python & Requests Library
Stuck? Join our Discord for help! https://discord.gg/wvfe3XJ

Today, we’ll be looking at scripting with Python. Using scripts is an important part of practising
security. The main reason to use scripts is for customisation and automation; you may want to
perform actions several times that aren’t supported by standard tools.

For now, let's look at using Python to make requests using a web page. For this, you’ll need to
download and install python3 and pip. Pip should already come installed with this version - if it
isn’t, you can download it from here.

Don’t worry if you haven’t done Python before - we’ll walk through an example script and explain
everything from scratch!

https://discord.gg/wvfe3XJ
https://realpython.com/installing-python/
https://pip.pypa.io/en/stable/installing/

The first few lines of Python scripts are usually import statements and they are used to import
libraries. In this case, on line 1, we’re importing the requests library. Software libraries/packages
can be thought of as functions in a different file. We usually use libraries for a number of
reasons:

●​ Efficiency - if someone has written code out there, then there’s no point writing it from
scratch(as long as it suits your purpose)

●​ Modularity - If we write code in terms of libraries, then we reduce the complexity of
changing and maintaining it as we only have to do it in one place

In this case, we’ve imported the whole library. In other cases, we can import specific functions.

Line 3 and 4 are referred to as variables. Variables are just placeholders for different values.
Python is what is known as a dynamically typed language, which means that the Python
interpreter will try to assume what kind of data type you’re trying to store in a variable. Variables
are in the form of
Name = value

Here are some example declarations:

●​ number = 1
●​ decimal_number = 1.0
●​ string_value = ‘hello’
●​ list = [1,2,3]
●​ dictionary_values = {“value_one” : 1, “value_two”: 2}

Here note that a string value has to be enclosed in single quotes(‘’) or double quotes(“”). The list
variable is used to store multiple values or variables. The dictionary_values variable is known as
a dictionary that stores data in a key:value format where the keys are unique values. To access
elements of a list use the syntax:

●​ List_name[position]. E.g. list[0] will access the value 1. Lists in Python(and in other
programming languages) start at the position 0 instead of 1.

●​ Dictionary_variable[key_name] e.g. dictionary_values[‘value_one’] will access the value
1

On line 6, we have a while loop. As stated in the article earlier, we may want to repeat actions
multiple times based on a condition and loops let us do this. The format of a python while loop is

while(condition is met):
 Execute_code_here

The condition can be various statements including:

●​ Arithmetic conditions(variable = value)
●​ String comparisons(variable is ‘value’)
●​ Chaining conditions using the and, or and not key words(if variable = value and variable

is ‘value’)

The condition in this while loop is checking if the host variable is not an empty string(i.e. It’s
checking if the host variable actually contains something). On line 7 you can see we’re actually
using the library we imported. Since we used one import statement and didn’t import functions,
the syntax of this line is:

Library_used.function_from_library
Requests.get

A function usually takes parameters or arguments. It needs parameters or arguments when it
needs to use external values. This is why functions are so useful. You can have the same block
of code and interchange different values. Here you can see the parameter is host + path. This
syntax is used to concatenate two strings so host + path will actually be interpreted by python as
https://tryhackme.com/ + robots.txt = https://tryhackme.com/robots.txt

Line 7 is essentially taking a URL, making a GET request to the page specified and storing the
response in a variable. The requests library supports other actions and you can check it out
here. Once we get the response, we can do a lot of different things with it. Line 9 accesses the
status code - this is important to check if a resource exists. In most cases, we’ll expect to get
200 response. Line 11-14 are commented out using the # character. This means that these lines
will not be executed.

Line 11 shows that we can actually access the data in JSON format which is the same as that of
a python dictionary(mentioned above). The JSON format is is commonly used to send and
retrieve data. Line 13 is needed because the request library converts the data sent inside the
JSON object to a different type of encoding(in this case unicode encoding). To make the data
easier to interpret and read, this is converted to human readable ASCII. You can see from
above that the print() syntax is used to print out the data specified.

Using the requests library, we can just access the raw text using the .text function. Finally, we
set the host variable to ‘’(an empty string). We do this because we don’t want the loop to run
infinitely; leaving the host value the same would mean that the condition evaluated by the loop
stays the same and the code in the loop is continually executed.

We would execute a python script using the command

python script_name.py

https://tryhackme.com/
https://tryhackme.com/robots.txt
https://requests.readthedocs.io/en/master/

When we run the script above, we see that it prints the response variable(the first line in the
image above). It then prints the status code(the second line). It then prints the text received from
the response(3rd and 4th line).

How would you actually use something like this in the real world:

●​ If you’re trying to write a script to test login functionality of a web application where the
login is multi step and uses data from different pages:

○​ E.g. first page requires a username and password and second page requires
data returned from this response

●​ Crawling web pages to build a site map
○​ Send a request to a page, get other links and do this for every link on the domain

	Python & Requests Library

