Thermal starter

I	A. The number of atoms in the gas
I	B. The number of moles of the gas
(C. The number of molecules of the gas
I	D. The number of particles in the gas
	2. An ideal gas has a volume of 15 ml, a temperature of 20 $^{\circ}$ C and a pressure of 100 kPa. The volume of gas is reduced to 5 ml and the temperature is raised to 40 $^{\circ}$ C. What is the new pressure of the gas?
I	A. 600 kPa
I	B. 320 kPa
(C. 200 kPa
I	D. 35 kPa
	3. The volume of an ideal gas in a container is increased at constant temperature. Which of the wing statements is/are correct about the molecules of the gas?
I	 Their average speed remains constant. The frequency of collisions of molecules with unit area of the container wall decreases. The force between them decreases.
I (A. I only B. I and II only C. I and III only D. II and III only
	4. The energy of the molecules of an ideal gas is
	1. thermal only.
	 thermal and potential. potential and kinetic.
	4. kinetic only.

1. What does the constant n represent in the equation of state for an ideal gas pV = nRT?

5. A fixed mass of an ideal gas is trapped in a cylinder of constant volume and its temperature is varied. Which graph shows the variation of the pressure of the gas with temperature in degrees Celsius?

A. pressure

0 temperature / °C

pressure 0 temperature / °C

 pressure 0 temperature / °C

6. An ideal gas of N molecules is maintained at a constant pressure p. The graph shows how the volume V of the gas varies with absolute temperature T.

D.

What is the gradient of the graph?

- A. $\frac{N}{p}$
- B. $\frac{NR}{p}$
- C. $\frac{Nk_{\mathrm{B}}}{p}$
- D. $\frac{N}{Rp}$

7. A fixed mass of an ideal gas has a constant volume. Two quantities, *R* and *S*, of the gas vary as shown by the graph below.

What quantities do *R* and *S* represent?

[1 mark]

8a. An ideal monatomic gas is kept in a container of volume 2.1×10^{-4} m³, temperature 310 K and pressure 5.3×10^5 Pa.

State what is meant by an ideal gas.

8h Calculate the number of atoms in the gas	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]
8b. Calculate the number of atoms in the gas.	[1 mark]

8c. Calculate, in J, the internal energy of the gas.	[2 marks]
8d. The volume of the gas in (a) is increased to 6.8×10^{-4} m ³ at constant temperature.	
Calculate, in Pa, the new pressure of the gas.	[1 mark]
8e. Explain, in terms of molecular motion, this change in pressure.	[2 marks]