Thermal starter | I | A. The number of atoms in the gas | |--------|---| | I | B. The number of moles of the gas | | (| C. The number of molecules of the gas | | I | D. The number of particles in the gas | | | | | | 2. An ideal gas has a volume of 15 ml, a temperature of 20 $^{\circ}$ C and a pressure of 100 kPa. The volume of gas is reduced to 5 ml and the temperature is raised to 40 $^{\circ}$ C. What is the new pressure of the gas? | | I | A. 600 kPa | | I | B. 320 kPa | | (| C. 200 kPa | | I | D. 35 kPa | | | | | | 3. The volume of an ideal gas in a container is increased at constant temperature. Which of the wing statements is/are correct about the molecules of the gas? | | I | Their average speed remains constant. The frequency of collisions of molecules with unit area of the container wall decreases. The force between them decreases. | | I
(| A. I only
B. I and II only
C. I and III only
D. II and III only | | | 4. The energy of the molecules of an ideal gas is | | | 1. thermal only. | | | thermal and potential. potential and kinetic. | | | 4. kinetic only. | | | | **1.** What does the constant n represent in the equation of state for an ideal gas pV = nRT? **5.** A fixed mass of an ideal gas is trapped in a cylinder of constant volume and its temperature is varied. Which graph shows the variation of the pressure of the gas with temperature in degrees Celsius? A. pressure 0 temperature / °C pressure 0 temperature / °C pressure 0 temperature / °C **6.** An ideal gas of N molecules is maintained at a constant pressure p. The graph shows how the volume V of the gas varies with absolute temperature T. D. What is the gradient of the graph? - A. $\frac{N}{p}$ - B. $\frac{NR}{p}$ - C. $\frac{Nk_{\mathrm{B}}}{p}$ - D. $\frac{N}{Rp}$ **7.** A fixed mass of an ideal gas has a constant volume. Two quantities, *R* and *S*, of the gas vary as shown by the graph below. What quantities do *R* and *S* represent? [1 mark] **8a.** An ideal monatomic gas is kept in a container of volume 2.1×10^{-4} m³, temperature 310 K and pressure 5.3×10^5 Pa. State what is meant by an ideal gas. | *************************************** | | |--|----------| 8h Calculate the number of atoms in the gas | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8b. Calculate the number of atoms in the gas. | [1 mark] | | 8c. Calculate, in J, the internal energy of the gas. | [2 marks] | |--|-----------| 8d. The volume of the gas in (a) is increased to 6.8×10^{-4} m ³ at constant temperature. | | | Calculate, in Pa, the new pressure of the gas. | [1 mark] | | | | | | | | | | | | | | | | | 8e. Explain, in terms of molecular motion, this change in pressure. | [2 marks] |