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Read-copy update (RCU) has stricter shared-variable marking guidelines than does the rest of
the kernel. This is due to RCU’s relatively complexity and highly concurrent design, and the
consequent desire to get all the help that is available from tools such as KCSAN.

Oddly enough, these strict guidelines are also appropriate for simple code, for example, that
does strict locking. In such cases, any data race at all is a bug, for example, a failure to acquire
the proper lock.

This document does not cover the recently proposed __data_racy marking that can be
applied to a given data object. This marking indicates that all accesses to that object should be
treated as if they had been passed through KCSAN’s data_race() API member.
Alternatively, hardened builds of the Linux kernel could treat such objects as if they were
volatile.

See also the tools/memory-model/Documentation/access-marking.txt file in the
Linux-kernel source tree.

RCU Shared-Variable Marking Rules
In RCU, the key point is not whether the compiler can or cannot introduce any destructive
optimizations, nor is it to minimize the size of the source code. The key point is instead to
permit some of the concurrency design to be baked into the source code so as to allow KCSAN
to check whether the code matches this design.

Plain C-Language Reads and Writes
Within RCU, use plain C-language reads and writes in code where a data race indicates a
concurrency design bug. Thus, use of a C-language read indicates that the variable being read
is guaranteed not to be concurrently updated (even to the same value and even by an interrupt
handler) at the time of that read, though it might be concurrently read. For example, if all
updates to that variable are protected by an exclusive lock that is held at the time of the read,
that read can be a plain C-language read. This arrangement enables KCSAN to report lockless
(and thus buggy) updates to that variable.
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Similarly, use of a C-language write indicates that the variable being written is guaranteed not to
be concurrently accessed (at all!) at the time of that write. For example, if all accesses to that
variable are protected by an exclusive lock that is held at the time of the write, that write can be
a plain C-language write. This arrangement enables KCSAN to report lockless (and thus
buggy) plain C-language reads from and writes to that variable. Obtaining the same effect in
non-RCU code using non-strict KCSAN rules requires use of
ASSERT_EXCLUSIVE_ACCESS(), for example, as shown below:

x = 1;
ASSERT_EXCLUSIVE_ACCESS(x);

Note that for volatile variables such as jiffies, a plain C-language read or write is implicitly a
READ_ONCE() or WRITE_ONCE(), respectively.

This rule clearly documents which accesses are subject to data races, making RCU’s
concurrency design more clear both to human developers and to KCSAN.

READ_ONCE()

Within RCU code, use READ_ONCE() in code where the variable being read might be
concurrently updated by an appropriately marked write. For example, if the concurrency design
allows lockless reads of a variable, then use of READ_ONCE() will prevent KCSAN from
complaining about that read even when that read executes concurrently with appropriately
marked accesses (either read or write). Note that READ_ONCE() also prevents load fusing
(which can result in infinite loops) and invented loads (which can confuse code expecting to use
a consistent value).

The atomic_read() family of primitives plays the same role in RCU as does READ_ONCE().

In code where a variable is guaranteed not to be concurrently updated, a plain C-language read
should be used instead.

WRITE_ONCE()

Within RCU code, use WRITE_ONCE() in code where the variable being written might be either
concurrently read or concurrently updated. For example, if the concurrency design permits
lockless updates, then use of will prevent KCSAN from complaining about that write even when
that write executes concurrently with appropriately marked accesses (either read or write). Note
that WRITE_ONCE() also prevents invention and fusing of stores.

The atomic_set() family of primitives plays the same role in RCU as does WRITE_ONCE().



Of course, one of the objections to RCU’s KCSAN configuration is that additional writes must be
protected by WRITE_ONCE() or similar. On the other hand, RCU’s configuration allows plain
C-language writes to mean something different than WRITE_ONCE(), increasing
expressiveness.

As with READ_ONCE(), in code where a variable is guaranteed not to be currently accessed, a
plain C-language write should be used instead.

Read-Modify-Write Atomic Operations
The Linux kernel’s read-modify-write atomic operations are their own markings. As such, they
inform both the developer and KCSAN of the possibility of concurrent access to the atomically
manipulated variable.

As with READ_ONCE() and WRITE_ONCE(), it is considered poor form to use an atomic
read-modify-write operation in code where concurrent access is not possible.

data_race() and __no_kcsan
The KCSAN data_race() primitive causes KCSAN to ignore any data races involving that
data_race() instance’s argument. This can be helpful in cases where there are no data
races except for those that might be produced by diagnostic output. The diagnostic code can
enclose its accesses within data_race() to prevent KCSAN from reporting data races
involving those accesses.

For example, consider a variable that is to be accessed only under a lock, aside from some
debugging/statistical accesses. Under RCU's KCSAN rules, marking those debugging/statistical
accesses with READ_ONCE() would require all the updates to be marked with WRITE_ONCE().
This would prevent KCSAN from noticing a buggy lockless WRITE_ONCE() update of that
variable.

In contrast, if data_race() is used for the debugging/statistical accesses and the normal
lock-protected accesses are left unmarked (as normal C-language accesses), then KCSAN will
complain about any buggy lockless accesses, even if they are marked with READ_ONCE() or
WRITE_ONCE().

Although an entire diagnostic function can be declared off-limits for data-race reporting by
adding __no_kcsan to that function’s return-value type, this is discouraged in RCU code, as is
Makefile-based KCSAN disabling. In both cases, it is all too easy for an access that is neither
for debugging or for statistics gathering to slip into that function or that file, which impairs
KCSAN’s ability to find bugs.



ASSERT_EXCLUSIVE_WRITER()

Within RCU code, use ASSERT_EXCLUSIVE_WRITER() to tell KCSAN that a variable updated
using WRITE_ONCE() should not be subject to any concurrent updates. However, unlike a
plain C-language write, KCSAN will not complain about concurrent reads.

The ASSERT_EXCLUSIVE_WRITER_SCOPED() macro may be used to cover a scope, and
perhaps RCU should introduce scopes enclusing lock-based critical sections in order to make
use of this capability.

ASSERT_EXCLUSIVE_ACCESS()

Within RCU code, use ASSERT_EXCLUSIVE_ACCESS() to tell KCSAN that there should be no
concurrent accesses to the variable. This is different from a plain C-language write (which
would otherwise achieve the same thing) in that there is no actual access to the variable, just
the KCSAN check.

KCSAN Marking Comparison
This section compares RCU and non-RCU markings. For reference, the KCSAN Settings
section lists rcutorture’s KCSAN Kconfig options. Again, the point of RCU’s marking rules is not
to minimize source-code size, but instead to get the most out of KCSAN.

One caution throughout all of this is that there really have been compilers that are happy to tear
non-atomic non-volatile stores of certain constants. This is not a problem for CPU architectures
featuring full-sized immediates, but last I knew, not all architectures had full-sized immediates.

Exclusive Accesses
This section covers cases where the access in question is intended to be the only access to the
object in question. This exclusivity might be enforced by a lock or by the fact that no other entity
has access to the object in question.

Reads
The enforcement is as follows:

Rest of Kernel RCU

r1 = a;
ASSERT_EXCLUSIVE_ACCESS(a);

r1 = a;
ASSERT_EXCLUSIVE_ACCESS(a);



In both cases, a normal C-language read is coupled with a call to the KCSAN
ASSERT_EXCLUSIVE_ACCESS() function.

Writes
The enforcement is as follows:

Rest of Kernel RCU

a = 1;
ASSERT_EXCLUSIVE_ACCESS(a);

a = 1;

In the rest-of-kernel case, the fact that normal C-language writes are treated the same as is
WRITE_ONCE() means that a call to the KCSAN ASSERT_EXCLUSIVE_ACCESS() function is
required. In the RCU case, a normal C-language write suffices.

Atomics
Use of atomic_t and friends mean that there is no reasonable normal C-language access.
The enforcement is thus as follows:

Rest of Kernel RCU

RMW(&a);
ASSERT_EXCLUSIVE_ACCESS(a);

RMW(&a);
ASSERT_EXCLUSIVE_ACCESS(a);

In both cases, the desired read-modify-write function is coupled with a call to the KCSAN
ASSERT_EXCLUSIVE_ACCESS() function.

Concurrent Reads, Excluded Writes
This section covers cases where the access in question is intended to be free of any (other)
writes to the object in question. This exclusivity might be enforced by a lock or a reader-writer
lock. Alternatively, the object might be updated while holding a lock, but read locklessly.

Note that the rest-of-kernel KCSAN settings will forgive a data race with a write when that write
happens to write the same value. For example, if the value of x is already 5, then KCSAN will
refrain from complaining when there is a write of that same value of 5. In contrast, the RCU
settings cause KCSAN to complain in this same-value-written case.

Reads
This case permits concurrent reads to the object, but forbids concurrent writes, perhaps
because readers read-hold a lock that writers must write-hold. The enforcement is as follows:



Rest of Kernel RCU

r1 = a; r1 = a;

In both cases, a normal C-language read suffices.

Writes
This case allows a single update to run concurrently with reads, perhaps because updates are
carried out holding an exclusive lock in the presence of lockless readers. The enforcement is as
follows:

Rest of Kernel RCU

a = 1;
ASSERT_EXCLUSIVE_WRITER(a);

WRITE_ONCE(a, 1);
ASSERT_EXCLUSIVE_WRITER(a);

Both cases use ASSERT_EXCLUSIVE_WRITER() to cause KCSAN to forbid concurrent
writers. In the rest-of-kernel case, the fact that normal C-language writes are treated (by
KCSAN) the same as is WRITE_ONCE() means that a normal C-language write suffices. In the
RCU case, READ_ONCE() is used, which is more typing but also better documentation.

Atomics
Use of atomic_t and friends mean that there is no reasonable normal C-language access.
The enforcement is thus as follows:

Rest of Kernel RCU

RMW(&a);
ASSERT_EXCLUSIVE_WRITER(a);

RMW(&a);
ASSERT_EXCLUSIVE_WRITER(a);

In both cases, the desired read-modify-write function is coupled with a call to the KCSAN
ASSERT_EXCLUSIVE_WRITER() function, which causes KCSAN to warn if there are
concurrent writers.

Concurrent Accesses
This section covers cases where the access in question might race with any other access to that
same object.



Reads
This case permits concurrent reads to the object, but forbids concurrent writes, perhaps
because readers read-hold a lock that writers must write-hold. The enforcement is as follows:

Rest of Kernel RCU

READ_ONCE(r1, a); READ_ONCE(r1, a);

In both cases, the READ_ONCE() macro is used.

Writes
This case allows a single update to run concurrently with reads, perhaps because updates are
carried out holding an exclusive lock in the presence of lockless readers. The enforcement is as
follows:

Rest of Kernel RCU

a = 1; WRITE_ONCE(a, 1);

In the rest-of-kernel case, the fact that normal C-language writes are treated the same as
WRITE_ONCE() means that a normal C-language write suffices. In the RCU case,
WRITE_ONCE() is used, which is more typing but also better documentation.

Note that the KCSAN configuration used for RCU will detect data races in which the update did
not actually change the value of the variable. In contrast, the configuration used in the rest of
the kernel will fail to detect such data races.

However, one issue with the use of plain C-language assignments is that architectures that do
not support one-byte or two-byte stores cannot interoperate efficiently with other stores or
atomic operations to the same shared variable: Doing so requires that all one-byte or two-byte
stores be implemented using larger-sized read-modify-write atomic operations.

This might not be a long-term issue given that most (and perhaps all) of the systems lacking
hardware support for one-byte and two-byte load and store instructions are likely to be on their
way out of the Linux kernel. Nevertheless, the documentation benefits of that explicit
WRITE_ONCE() should not be understated.

Atomics
Use of atomic_t and friends mean that concurrent access is expected behavior. The
enforcement is thus as follows:



Rest of Kernel RCU

RMW(&a); RMW(&a);

In both cases, the desired read-modify-write function suffices.

Interrupt Handlers
Portions of RCU’s grace-period execute within the scheduling-clock interrupt handler and other
portions execute in the RCU_SOFTIRQ handler, and RCU therefore benefits from enabling
KCSAN to check data-racy accesses from interrupt handlers. In contrast, code that runs
primarily in process context need not care, and the rest-of-kernel KCSAN settings do not check
for data races with interrupt handlers.

Note well that use of normal C-language reads at process level combined with any sort of
update within an interrupt handler can cause confusion if the compiler invents loads at process
level, for example, if the compiler runs out of registers and therefore re-loads the variable
shared with that interrupt handler.

Rest of Kernel RCU

(No facility to detect data races with interrupt
handlers.)

Marked and unmarked accesses as shown
above.

It is possible that code will appear that allows data races with interrupt handlers but not with
other CPUs. Such code might motivate extensions to KCSAN.

RCU KCSAN Settings
The rcutorture scripting enables a number of additional KCSAN Kconfig options when the
--kcsan argument is selected:

● CONFIG_KCSAN_STRICT=y implies:
○ CONFIG_KCSAN_INTERRUPT_WATCHER=y, to check for data races between

mainline code and interrupt handlers. This is important for RCU because
portions of its grace-period state machine run in the scheduling-clock interrupt
handler.

○ CONFIG_KCSAN_WEAK_MEMORY=y, to check for data races induced by missing
memory barriers. (At the expense of less-effective detection of data races due to
write reordering, so those running rcutorture on ARM might wish to do at least
some runs disabling this Kconfig option.)



○ CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n, which checks for data
races involving writes that happen to set the value of the variable to the value
that it already had. This can be argued to be the right choice in general, but is
especially important here because RCU’s concurrency design does not rely on
same-value writes.

○ CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n, which does not treat
plain C-language writes as if they were instead WRITE_ONCE() invocations.
This choice improves KCSAN’s ability to detect situations where developers
incorrectly assume that a given variable was not being either read or written by
some other CPU at the time of the write.

○ CONFIG_KCSAN_IGNORE_ATOMICS=n, which is the normal choice.
● CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000, which tells KCSAN to report a given

data race at most one time per second. It might be worth further increasing this time
interval.

● CONFIG_KCSAN_VERBOSE=y, which adds held locks and interrupts.

As noted earlier, these settings are also appropriate for naive concurrent code, in which any
data race at all is a bug. One example of such code is that protected by pure locking, with no
lockless accesses. Additional use cases are called out in the next section.

It might be worth experimenting with additional KCSAN Kconfig options:

● CONFIG_KCSAN_NUM_WATCHPOINTS defaults to 64, and might be worth setting higher
when running on multi-socket systems.

● CONFIG_KCSAN_UDELAY_TASK defaults to 80 microseconds, and might be worth some
experimentation.

● CONFIG_KCSAN_UDELAY_INTERRUPT defaults to 20 microseconds, and might also be
worth some experimentation.

● CONFIG_KCSAN_DELAY_RANDOMIZE provides one way to experiment with the
previous pair of delays, providing randomly chosen delays up to the specified limits.

Use Cases for Aggressive KCSAN Settings
As noted above, aggressive KCSAN settings make sense for highly concurrent subsystems
such as RCU, but also for very simple use cases. Such use cases include:

● Code using strict locking. In this case, all uses of each shared variable must occur while
the corresponding lock is held, so data races indicate a bug in which the developer failed
to acquire the required lock.

● Code using lockless queues. In this case, the element is initialized, placed on the
queue, removed from the queue, processed, and then freed or otherwise reused. The
producer’s accesses to the queue element must precede those of the consumer, whose



accesses must in turn precede those of the next producer. Data races indicate a bug,
perhaps in the implementation of the queue itself or in the use of the queue’s API.

● Code using search structures, for example, those in which data in the structure remains
constant. Data races again indicate a bug, for example, cleaning up a data element
before having removed it from the search structure.

● Code using fork-join patterns. Here the data is initialized, child processes use that data,
and the data is cleaned up after the join. Data races indicate a bug, perhaps due data
being improperly used by the child processes.


