
Akash Verma
akashzsh08@gmail.com

Chhattisgarh, India
Timezone: Indian Standard Time (UTC+05:30)

Revolutionizing E-learning: Building
a Cutting-Edge Audio/Video
Transcription Generator and Editor

GSoC Project proposal for Kolibri Studio

Personal Details and Contact Information
➔ Name: Akash Verma

➔ Github:@akash5100

➔ Email: akashzsh08@gmail.com

➔ Timezone: Indian Standard Time (UTC+05:30)

➔ University: Shri Shankaracharya Institute of Professional Management

and Technology.

➔ Portfolio: Resume / Linkedin / Website

mailto:akashzsh08@gmail.com
https://github.com/akash5100
mailto:akashzsh08@gmail.com
https://linktr.ee/akzsh

Synopsis
The goal of this project is to add a feature to Kolibri Studio that allows for the
automatic generation and editing of captions for uploaded audio and video
resources. Currently, users can upload caption files in WebVTT format, but
there is no way to edit or preview them within the Studio. To enhance the
accessibility of Kolibri’s resources for learners, this project will focus on two
main tasks: (1) implementing an asynchronous, self-hosted solution for
auto-generating captions in the same language as the video with the ability to
be translated into different languages and (2) adding frontend support for
previewing and editing uploaded or auto-generated captions.

To achieve the first task, we will explore various libraries and tools that
support the languages already supported by Studio, as well as potentially
expanding the number of supported languages. We will consider both
proprietary and open-source options, including Google Cloud Speech-to-Text
service and emerging open-source libraries like OpenAI’sWhisper. The chosen
solution will be integrated into Kolibri Studio’s existing infrastructure to ensure
seamless operation.

For the second task, we will build a frontend editor that allows users to
preview and edit captions in real-time. This editor will support both uploaded
and auto-generated captions and will allow for basic text editing and
synchronization with the video or audio resource. The editor will also support
multilanguage options, with automatic translation to be considered as a future
enhancement.

Overall, the auto-generated captions and editor feature will significantly
enhance Kolibri Studio’s accessibility and usability, making it easier for
learners to access and engage with educational resources.

I will be focusing on implementing the auto-generation of captions and editor
feature within the Learning Equality Studio repository with Blaine Jester and
Richard Tibbles as my mentors.

Benefits to the Community
Creating accurate WebVTT files for video lectures or audio resources can be a
time-consuming and tedious task, especially for content creators who may
not be familiar with the technical requirements and formatting rules. The
absence of subtitles or transcriptions in an E-learning platform can be a
significant barrier to learning, as it can hinder accessibility and
comprehension for students who are deaf or hard of hearing, non-native
speakers, or simply who prefer to learn with captions.

The addition of an auto-generate captions feature to Kolibri Studio will
enhance the platform's accessibility and usability, making it easier for content
creators to seamlessly create content without being worried about adding
captions by themselves as well as for learners to access and engage with
educational resources. This will help progress Studio by making it more
inclusive and user-friendly, potentially increasing its usage and reach.

Anticipated benefits to the community:—

➢ Increased language support — A wider range of languages, potentially
making Kolibri Studio resources more accessible to non-native speakers.

➢ Better engagement — Captioned videos can help learners stay engaged
with educational content, as they are less likely to miss important
information.

➢ Increased usage — The addition of an auto-generate captions feature may
lead to an increased usage of Kolibri Studio, as it will make the platform
more accessible and user-friendly.

➢ Greater reach — By making educational resources more accessible, Kolibri
Studio will be able to reach a wider audience.

The implementation of an auto-generate captions feature in Kolibri Studio
opens up possibilities for future development in several areas. For example,
the automatic translation of captions could be considered a future
enhancement, allowing for even greater language support and accessibility.
The frontend editor could also be expanded to include more advanced
features, such as the ability to add annotations or notes to the captions.

Additionally, we could consider adding a regex search feature to the
transcriptions, which would allow learners to easily skip forward or backwards
in the video or audio resources.

Overall, the addition of an auto-generate captions feature to Kolibri Studio
provides a foundation for continued learning and improvement in the areas of
accessibility and usability.

Current Status of the Project
At present, the REST API endpoint “POST /api/file/upload_url” is responsible
for handling the uploading of all types of files, including WebVTT subtitle files,
as well as video and audio resources, to the database.

Regarding the project, the current frontend architecture exclusively supports
uploading subtitle files that are associated with either a video or an audio file.
Upon uploading, the file is stored in the PostgreSQL database. When the
multimedia content is played in Kolibri, which utilizes video.js, it looks for a
.vtt extension in the current ContentNode. If an associated subtitle file is
found, it is added to the <track>.

Enabling Kolibri to provide auto-generated
captions/subtitles without an internet connection
Kolibri is widely recognised for its ability to operate in regions where the
internet is expensive, unreliable, or inaccessible. To facilitate the
implementation of auto-generated captions, my proposal involves generating
them automatically during the content creation process on Studio. It is
important to note that the accuracy of the auto-generated captions may not
always be reliable. Therefore, a Caption editor similar to the one provided by
the popular Youtube Studio will be available for use.

Below is an image that depicts the caption editing feature in YouTube Studio:

We will use Celery to generate captions in the background without blocking
the user interface. Studio uses Celery for executing asynchronous tasks,
which are integral to Studio's channel editing architecture. We can use this
current implementation to simplify the asynchronous generation of captions.

Goals

Goal 1 - Generating Valid WebVTT file
- Generating the transcription from video input.

Starting the implementation with the Backend-First Development
approach, we first implement the backend which will generate the
subtitle/transcription for any multimedia input (audio, video).

- Creating a WebVTT file using the transcription output.
The generated transcription is not really in the file format that we
need so we need to generate content conforming to the WebVTT file
format, which will be stored in the PostgreSQL database.

- Creating a clear endpoint architecture to facilitate data transfer
from the backend to the frontend.
Studio retrieves data in the frontend from read-only REST endpoints
implemented using Django Rest Framework. I will decide the request

and response format of the API endpoints. The GET to populate the
editor and POST/PUT to update the backend.

Goal 2 - Connecting Backend to Frontend
- Implementing the GET API endpoint to populate the Editor.

Implementing the GET request API endpoint to populate the editor.
We will use this endpoint when a user clicks the “edit caption” button
in the frontend.

- Implementing the PUT/POST request to update the changes made
in the frontend to the database:
Implement a REST API endpoint for updating the WebVTT file in the
database. This endpoint should accept a PUT or POST request with
the updated content of the WebVTT file in the PostgreSQL database.

Goal 3 - Frontend Vue.js Component
- Crafting the cool editor:

There must be some way to finetune the auto-generated WebVTT
file. Clicking the “edit captions” button on the frontend vue.js
component in the ChannelEdit Single Page Application will open a
new component, namely the editor.

- Populating the editor:
Populate the editor with the necessary REST API endpoint. And
finally, allow the frontend changes to sync with the database when
the “save” button is clicked.

Deliverables

Deliverable 1
Expected by Evaluation 1

- Implementation of the Transcriber function def

transcribe(video, audio)
- Implementation of the error handling in the transcribe function.
- Testing

- Implement def generate_vtt_file(data) with the feature to
upload the vtt file generated to Google Cloud Storage using “file_id”
and a pre-signed URL.

- Django model GeneratedCaptions and the corresponding viewset
CaptionsViewSet.

- Add necessary documentation.

Deliverable 2
Expected by Evaluation 2

- Implement create_from_changes, update_from_changes and
delete_from_changes viewset action for CaptionsViewSet.

- GET request REST API endpoint to populate the editor, retrieving
JSON file from PostgreSQL.

- POST request REST API endpoint for the “save” action, update the
JSON file in the PostgreSQL database and update the already
existing VTT blob in Google Cloud Storage.

- Initialize Frontend component CaptionEditor in ChannelEdit Vue.js
SPA.

Deliverable 3
Expected by the end of the coding period

- Implement caption populating objecting with the help of the GET
request API endpoint created earlier.

- Implement Video playback in the browser.
- Work on syncing the Video and Caption together.
- Integrate the SAVE feature in the frontend with the help of the POST

request API endpoint created earlier.
- Add necessary documentation.

Expected Results
The final product of this project will be an enhanced version of Kolibri Studio
that includes the following components and features:

1. Asynchronous, self-hosted solutions for auto-generating captions for audio
or video resources.
➔ The backend will be implemented first to generate

subtitle/transcription for the input video.
➔ The generated captions will be saved in JSON format and stored in

the PostgreSQL database.
➔ The JSON object will be used to convert into WebVTT and uploaded

to Google Cloud Storage.
➔ REST API endpoint will be implemented to allow for editing of the

generated captions.

2. Frontend support for previewing and editing captions.
➔ A new Vue.js component will be created to display the captions in a

user-friendly way.
➔ An editor component will be implemented to allow users to edit the

captions.
➔ The editor component will be connected to the REST API endpoint,

so that changes made on the frontend will be synced to the backend.

In addition to the above components, we aim to implement the following
stretch goals and features:

➔ Improved accessibility for Kolibri resources by automatically
generating captions inmultiple languages.

The final product will enable Kolibri Studio users to easily create and edit
captions for their audio and video resources, improving accessibility and
enhancing the overall learning experience for Kolibri users.

Approach

Overview of the approach
Before discussing the implementation, we need to determine the best tool
available for caption generation. This may require exploring various
speech-to-text APIs and libraries and evaluating their accuracy, usability and
cost.

Once we have selected a suitable tool, we can begin the process of generating
captions as an asynchronous task. This will involve using Celery, which is
already integrated into Kolibri Studio, allowing us to process the transcription
in the background without blocking the user interface. Studio also leverages
django-celery-results to easily track the progress and status of tasks, as well
as analyze the results of completed tasks. We can use this to store the task
results in a database and use it to populate the frontend.

After generating the captions or transcriptions, it's important to provide users
with an editor in the Vue.js frontend to allow them to make any necessary
modifications. For this purpose, we'll need to create a REST API endpoint that
accepts PUT or POST requests to update the captions in the database.

Finally, we need to create an editor that allows users to edit the captions in a
user-friendly way. On the frontend side, Studio uses Vue.js, so we will use it to
build a web-based editor. The editor should allow users to edit and maybe
provide features like spell-checking and formatting.

Comparing Cloud-hosted and Self-hosted Solutions
for Studio

Benefits and Drawbacks of Cloud-hosted solutions
I understand that the project summary favours a self-hosted solution.
However, I believe it's still worth considering popular cloud-hosted solutions
like Google Speech to Text. This is because it is easier to scale up or down,

and the cost of hosting a self-hosted solution can sometimes exceed that of a
cloud-hosted solution. Therefore, we should explore every possible option to
find the best solution for the project. Here is a quick summary of some
popular Speech-to-Text (STT) services that I made:

API Main Details Language
Supported

Pricing

Amazon
Transcrib
e

Punctuation and
formatting,
telephony audio,
customization and
multiple speakers
recognition

37 This doesn’t
meet the
project
requirement
as language
support is
insufficient.

Google
Cloud

Customization,
batch and real-time
modes, noise
robustness, filters
for wrong words
relative to the
context, flexibility in
the source files
storage

120 $0.024 per
minute =
$1.44 per
hour

IBM
Watson

Real-time mode,
custom models,
keywords spotting,
speaker labels (in
beta), word
confidence, word
timestamps,
profanity filtering,
word alternatives,
smart formatting (in
beta)

14 This doesn’t
meet the
project
requirement
as language
support is
insufficient.

https://aws.amazon.com/about-aws/whats-new/2022/06/amazon-transcribe-supports-automatic-language-identification-multi-lingual-audio/#:~:text=Automatic%20language%20identification%20for%20multilingual,)%2C%20US%20East%20(N.
https://cloud.google.com/speech-to-text/docs/speech-to-text-supported-languages
https://cloud.google.com/speech-to-text/pricing#pricing_factors
https://cloud.google.com/speech-to-text/pricing#pricing_factors
https://cloud.google.com/speech-to-text/pricing#pricing_factors
https://cloud.google.com/speech-to-text/pricing#pricing_factors
https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-about

Microsoft
Azure

Real-time mode,
customization,
formatting, profanity
filtering, text
normalization,
integration with
Azure LUIS, speech
scenarios

58, if you
filter
“audio +
human-label
led
transcript”

$1.40 per
hour

By leveraging the Google Cloud Service, we can easily integrate speech-to-text
functionality into Kolibri Studio's existing infrastructure. As Kolibri Studio
already uses Google Cloud Storage (used in utils/celery), this would be a good
option as it would leverage the existing infrastructure and APIs, making it
easier to integrate and maintain.

Benefits and Drawbacks of Self-hosted Solutions
A self-hosted solution have its own advantages, we have control over the
infrastructure and security of data, and it can also be cost-effective in the long
run compared to cloud hosting because we are free from paying for plans to
the cloud service.

There are two types of models that can be used in Kolibri Studio's self-hosted
solution. The first type is a pre-trained model, such as Google Speech-to-Text
(although it is cloud-hosted, it’s a pre-trained model), Mozilla DeepSpeech, or
OpenAI Whisper, which does not require software developers to pay attention
to training data because it is already pre-trained and can be fine-tuned
according to the software's needs. The second type is a model that requires
training from datasets, such as Kaldi ASR or CMU Sphinx, which have
advantages such as good accuracy, and customizability, and may even
support less common languages.

Radina Matic 5 days ago

Yes to both: depending on the platform Farsi and Persian are interchangeable,
and various dialect of Fula are spoken in several territories across equatorial
Africa, but the one we have Kolibri translated into (Fulfulde Mbororore) is from
Cameroon, where our partner is located. This locale might be difficult to find in
other libraries.

https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support?tabs=stt
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/speech-services/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/speech-services/
https://github.com/mozilla/DeepSpeech
https://openai.com/research/whisper
https://kaldi-asr.org/doc/about.html
https://cmusphinx.github.io/
https://learningequality.slack.com/archives/C04QNJMME58/p1677606666511389?thread_ts=1677418289.984859&cid=C04QNJMME58

However, the disadvantages of using a model that needs training include
being time-consuming, needing more storage resources as the new language
is added, needing a large dataset for training, and requiring human testing to
ensure correct translations (or can be done with training dataset). For Kolibri
Studio, a pre-trained model would be best suited due to its ease of use and
time efficiency.

How can I say it requires more storage space?
Using Docker, I tried training the Kaldi ASR Spanish model (GitHub link to the
example model that I trained) with the example dataset provided in the GitHub
repository, and here are the results, the code snippet is an output of the
terminal, shows the result of `du -h` command, stands for Disk Usage:

root@00bba0c337el:/opt/kaldi# ls egs/spanish_dimex100/

README.txt s5

root@00bba0c337e1:/opt/kaldi# ls

egs/spanish_dimex100/s5/exp/

make_mfcc mono mono_aligned tril tril_aligned tri2b

tri2b_aligned tri2b_denlats tri2b_mmi_b0.05

root@00bba0c337el:/opt/kaldi# du -h

242M ./egs/spanish_dimex100/s5/exp

4.5G ./egs/spanish_dimex100/s5

4.5G ./egs/spanish_dimex100

If the decision is made to integrate a self-hosted solution, I recommend
considering a pre-trained model over a model that requires training.
Pre-trained models can offer significant advantages like the speed of
deployment, and ease of use, making them a better option for Kolibri Studio.

https://github.com/kaldi-asr/kaldi/tree/master/egs/spanish_dimex100
https://github.com/kaldi-asr/kaldi/tree/master/egs/spanish_dimex100

Key Takeaways fromMy Deep Learning Self-Study
I learned Deep Learning through the book "Deep Learning for Coders" by
Jeremy Howard. It says that if we want a more accurate model with less data
and less time and money, the most important method is using
transfer-learning. Here are some important points that I want to highlight
through the images below.

Researching the Best Speech-to-Text Solution for
Studio

A Comparative Analysis of Self-Hosted Transcription
Solutions for Studio: Identifying the Best Option Based on
Research
One reasonable way to compare OpenAI's Whisper and Mozilla's DeepSpeech
is by comparing their language support, resource requirements, and accuracy.
As the OpenAI Whisper docs suggest, see tokenizer.py for the list of all
available languages, it seems that the length of the LANGUAGES dictionary is
99, whereas DeepSpeech releases only an English-trained model (says the
community discussion) also there might be a possibility that currently,
DeepSpeech has more supported language than OpenAI whisper, but Whisper
provides the user to download the Multilingual model.

https://g.co/kgs/gbEqK3
https://www.google.com/search?q=jeremy+howard
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py
https://discourse.mozilla.org/t/how-many-languages-does-deepspeech-support/53263
https://discourse.mozilla.org/t/how-many-languages-does-deepspeech-support/53263

The accuracy of Speech-to-Text models is measured by Word Error Rate
(WER). Word Error Rate is a metric used to measure the performance of
speech recognition or text-to-speech systems. It is a measure of the
difference between the transcription generated by a machine and the
reference transcription, which is typically the actual text that was spoken.

A lower WER indicates better accuracy and performance of the speech
recognition or speech-to-text system.

The DeepSpeech Research Paper shows a word error rate of 6.56%

On the other hand, the OpenAI Whisper research paper shows a benchmark of
Whisper running on different open-source datasets, revealing an average word
error rate of 12.8%, which is higher than DeepSpeech's 6.56%.

https://arxiv.org/pdf/1412.5567.pdf
https://arxiv.org/pdf/2212.04356.pdf

However, it is important to note that the 12.8% WER is an average across
multiple datasets, while DeepSpeech's performance was tested specifically on
the LibriSpeech Dataset. In this dataset, Whisper's WER is 5.2%, lower than
DeepSpeech's result.

The research also compares Whisper with other transcription systems:

The image below shows the result of comparing both models to the same
dataset (LibriSpeech). Whisper has 2.7 WER while DeepSpeech has 5.33 WER.

OpenAI Whisper is made open-source on September 21, 2022, and it
demonstrates a strong ability to generalise to many datasets and domains
without the need for fine-tuning, giving tough competition to most of the
existing open-source as well as Cloud services like Google Cloud, Azure etc.
OpenAI Whisper provides a Multilingual model which means the developer
should not worry about training separate models for different languages.

Conclusion: Unveiling the Ultimate Speech-to-Text
Solution
For Studio, a self-hosted solution has more advantages over using a
cloud-hosted solution. We have control over the infrastructure and security of
data, and it can also be cost-effective in the long run compared to cloud
hosting because we are free from paying for plans to the cloud service.

To address this challenge, we can explore hosting solution like HuggingFace,
which simplifies hosting inference models by turning them into APIs. By
leveraging HuggingFace, we can spin up and down hardware for the

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean
https://huggingface.co/openai/whisper-large-v2

autogenerate captioning feature as needed, reducing the burden of
maintaining and scaling our own servers.

Initially, if we have fewer requests for autogenerate captioning features, we
could use the base or small model which requires less computing resources
— as the demand increases we can shift gears tomedium or largemodels.

If we want to run the self-hosted service in Google Cloud VM Instance, the
price can range from $0.010 hourly + additional GPU cost for 2 vCPU, 1GB
memory up to $0.040 hourly + GPU cost for 2vCPU, 4GB memory. We can go
even higher as the traffic increases. If Kolibri Studio already has a VM
Instance running that has enough spare resources (idle resources) we can use
that which would reduce the cost to zero. I am including GPU because the
documentation says “Required VRAM”.

> The hourly rate includes running the server on 27/7. I cannot calculate
GPU cost because it’s not available in my region, for some reason.

In conclusion, a self-hosted solution with the option to leverage hosting
solutions like HuggingFace can provide the ultimate speech-to-text solution
for Studio, offering control over infrastructure, data security, and
cost-effectiveness. With careful consideration of computing resources and
maintenance, we can provide high-quality autogenerate captioning features to
our users.

Generating captions for Audio and Video

Link to the diagram

https://drive.google.com/file/d/1BIyxOinA0AbUiBNaaXrxG-gmyzTR4R8x/view?usp=sharing

To create the backend of the project, we need to follow the steps outlined
below:

1. Automated Caption Generation for Video and Audio
2. WebVTT File Creation: Ensuring Validity
3. Implementation of Restful API Endpoints for Frontend-Backend

Communication
4. The Development of the Editor

Automated caption generation for video and audio
This image shows the currently available feature of uploading captions. It
allows the user to upload a WebVTT file.

Instead, users will now see a new button called “Generate captions”
alongside “Add captions”. Clicking this button will ask users the following
information:

● The spoken language in the video, which reduces the backend
complexity of detecting language, and

● Any request to add additional language for translating the captions,
for translation.

The current implementation uses the “api/file/upload_url” endpoint to upload
the user-provided file directly to Google Cloud Storage, using a pre-signed
URL generated by the “get_presigned_upload_url” function. The response of
“api/file/upload_url” contains a “file_id” pointer to the uploaded file and
“uploadURL” which is the pre-signed URL that can be used to access the
uploaded file.

To implement the “generate captions” feature, we will create a new model and
a ViewSet in “viewsets/sync/base.py”. We will create a “GeneratedCaptions”
model that contains a foreign key to the “file_id” pointing to the associate
multimedia file and a “JSONField” that will store the generated VTT file in a
JSON format which can be helpful to render the VTT content in the frontend
editor as well as generate a valid VTT file, and a corresponding
“CaptionsViewSet”. The CaptionsViewSet will have support for

● CREATED: "create_from_changes"
● UPDATED: "update_from_changes"
● DELETED: "delete_from_changes"

When a user uploads a file and clicks “generate captions”, we will store
information in the IndexedDB that specifies “file_id” and its corresponding
“uploadURL”. In the next “api/sync” call, we will pass this information (i.e.
“file_id” and “uploadURL”) to the “create_from_changes” function from our
“CaptionsViewSet”. This function will then call the “generate_transcription”
function which in turn will execute the OpenAI Whisper model to generate the
transcription.

The backend on receiving the information of a new task enqueues an async
operation with the help of Celery.

Initializing – create_from_changes ViewSet Action

The create_from_changes action will retrieve the binary format of the
uploaded file with the help of “file_id” and “uploadURL” and pass it to the
OpenAI model. We can place the AI model in the
studio/contentcuration/contentcuration/utils/ folder, and name it something
like transcriber.py or caption_generator.py.

This code snippet provides an example of how OpenAI Whisper can be used
in the backend to generate a transcription for a video:

model = whisper.load_model("base")

result = model.transcribe("dummy_files/video.mp4")

And the result is

{

'text':" CDC is working to help keep you and your

community safe from the threat of a novel or new

coronavirus. There are steps you can take now to get

ready if an outbreak occurs in your community. Make a

household plan. Learn how to prepare and to take

quick action if someone gets sick. Older adults and

people with chronic medical conditions are at greater

risk. Take extra steps to protect them. Think about

what you will do if there are changes to your work

schedule. And remember to always practice good health

habits such as frequently washing hands with soap and

water, staying home when sick and covering coughs and

sneezes. For more information, visit CDC.gov.",

'segments':[

{

'id':0,

'seek':0,

'start':0.0,

'end':6.0,

'text':' CDC is working to help keep you and

your community safe from the threat of a novel or new

coronavirus.',

'tokens':[...],

'temperature':0.0,

'avg_logprob':-0.09554368478280527,

'compression_ratio':1.6453900709219857,

'no_speech_prob':0.0052330042235553265

},

{

'id':1,

'seek':0,

'start':6.0,

'end':11.0,

'text':' There are steps you can take now to

get ready if an outbreak occurs in your community.',

'tokens':[...],

'temperature':0.0,

'avg_logprob':-0.09554368478280527,

'compression_ratio':1.6453900709219857,

'no_speech_prob':0.0052330042235553265

},

…
}

The resulting data will contain additional information, but we are specifically
interested in the following:
● segments: A list of objects representing each segment of the audio that

was transcribed. Each segment contains the following keys:
○ id: A unique identifier for the segment.
○ start: The start time of the segment in seconds.
○ end: The end time of the segment in seconds.
○ text: The transcribed text for the segment.
○ avg_logprob: The average log probability of the transcribed text.
○ no_speech_prob: The probability that there was no speech in the

audio during the segment.

For Step 1, the next objective is to format the data into a JSON object that
contains only the relevant information needed to create a WebVTT file such
as the id, start, end, and text. This JSON object will then be uploaded to the
GeneratedCaptions model.

This creates a level of abstraction to the generate_transcription function and
enables developers to easily switch to a different model if required in future.

> If, for any reason during the community bonding period, the mentors
decide to change the AI model, only this specific step would require

modification, and the rest of the proposal would remain unaffected by
this decision.

WebVTT File Creation: Ensuring Validity
In the next step, we need to convert the transcription generated from step 1
into a valid WebVTT file. We could create a function called generate_vtt_file.
This function will take the “JSONField” value and the “file_id”, available from
the generate_transcription function.

A valid WebVTT file is a text file that follows the WebVTT format, which is a
format for displaying timed text in connection with a multimedia
presentation. A valid WebVTT file typically has the following features
(Mozilla):

- It begins with a header
- Each cue (a timed text unit) is introduced by a cue identifier and a

timestamp and is followed by the text content of the cue.
- Cue timestamps are expressed in a specific format: hours, minutes,

and seconds, separated by colons and commas, e.g. "00:01:26".

So, the format would be

WEBVTT

0

00:01:18 --> 00:01:20

- Hello Learning Equality!

We can convert the “start” and “end” values to the HH:MM:SS format using
python datatime.timedelta.

start = datetime.timedelta(seconds=seconds)

This repeating format can be easily created with a python script.

https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API
https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API#webvtt_body
https://docs.python.org/3/library/datetime.html#datetime.timedelta.total_seconds

WEBVTT

id

Start --> end

- Text

id

Start --> end

- Text

id

Start --> end

- Text

Many AI models that transcribe multimedia files such as videos and audio,
including Mozilla DeepSpeech and OpenAI Whisper, provide timestamps in
their output.

Finally, after the successful generation of the WebVTT, we can save it as a file
blob to Google Cloud Storage.

Implementation of Restful API Endpoints for
Frontend-Backend Communication
To facilitate communication between the frontend and backend of the
application, we must create API endpoints in the
"contentcuration/contentcuration/urls.py" file and define the necessary views
for each endpoint in the "/views" directory. The first API endpoint, which will
be a GET request, will be used to populate the frontend editor with the JSON
object stored in the "GeneratedCaptions" model. We will query the
PostgreSQL database with the "file_id" obtained from the frontend to retrieve
the corresponding JSON object.

When the user submits changes to the frontend editor, we need to update the
captions file in two locations: the JSONField in the "GeneratedCaptions"
model and the stored .vtt blob in Google Cloud Storage.

Frontend Save Action Handling
Upon clicking "save," the form will submit a JSON response containing the
captions file JSON object with edits. For the first part, we can directly update
the JSONField in the "GeneratedCaptions" model.

To ensure that any updates to GeneratedCaptions trigger the
"generate_vtt_file" function, we will set up a system whereby a Celery task is
enqueued for any "update_from_changes'' made in the model. The function
will be responsible for updating the file in Google Cloud Storage.

The Development of the Editor
Now that we have a way by which we can communicate from frontend to
backend. I will try to explain what we need to do in the frontend, specifically in
the ChannelEdit Single-Page-Application (SPA).

We will need to create a new component in the “component” directory for the
caption editor. This component will contain all the necessary form inputs and
buttons for creating and editing captions.

Add a new route for the caption editor in the “router.js” file in the “views”
directory. This will allow the user to access the caption editor component.
The link to this component will be visible after either uploading the captions
(allowing users to edit the already existing .vtt file) or after the “Generate
captions” task is successful.

I have prepared a Figma file, which is available for your review at [link]. For
optimal viewing experience, please click on the 'Play' button located in the top
right corner of the screen.

https://www.figma.com/file/O0L6a8RCwpUDcJ2txiY50X/Learning-Equality-Studio?node-id=1-2&t=S2mVP8IcRmQ39Icm-0

How can we make this frontend?

1. First, we create a time-synced mapping: Create a mapping of the video
duration to the corresponding capti ons. For example, if the video is 2
minutes long, and we have captions at 0:30, 0:45, 1:15, and 1:45, we would
create a mapping like this:

{

‘0:30’ : 0,

‘0:45’ : 1,

‘1:15’ : 2,

‘1:45’ : 3

}

This mapping will allow us to easily look up the correct subtitle to display
at any given time during playback.

2. Play the video: We can use a video player library to play the video on the
left side of the screen.

3. Highlight the current subtitle: We can add an event listener to the video
player to detect when the video is playing and update the display on the
right side of the screen with the current subtitle. To display the subtitle
based on the current time of the video, we can use the mapping created
earlier. To highlight the current subtitle in the caption editor, we can change
its CSS style.

4. Sync the subtitle display: When the video is paused or seeked to a
different time, update the display on the right side of the screen to show
the correct subtitle. Again, use the mapping created earlier to look up the
correct subtitle to display based on the current time of the video.

5. Edit the subtitles: Each block of subtitles that you see on the left-hand side
of the image will be the ‘<input>‘ field. This will allow the user to edit the
text of the subtitles in the text editor. When the user makes changes,
update the subtitle text in the mapping and re-sync the display to show the
correct subtitle at the current time.

Backend Architecture Diagram

Link to Diagram

https://drive.google.com/file/d/1wANjCCxLzGGkIHhnQy-Mh6oB4lofPHLB/view?usp=share_link

Link to Create Diagram

https://drive.google.com/file/d/1hIGXOGjIQRodH7mVXL8O4FTHMzYw81I4/view?usp=share_link

Link to Update Diagram

https://drive.google.com/file/d/1C1tmgxwhx_SAuQ3nYMy9AViQ5bw6aHxd/view?usp=share_link

Timeline

Period Task

After proposal submission
[April 4 - May 4]

- Study more about Django Rest
Framework.

- Study celery.
- Learn about async behaviour with

celery task
- Continue contribution by solving

issues and staying connected with
mentors.

Community Bonding Period [May 4 - May 28]

Week 0 and Week 1
[May 4 - May 21]

- Meet with mentors and request which
part of the proposal needs work.

- Investigate and research the part of
the project which requires the most
work.

- Understand the edge cases.
- Fix any performance issues in the

architecture.
- Improve and finalize the complete

backend architecture.

Week 2

[May 22 - May 28]
- Finalizing the frontend architecture.
- Discuss the testing

First Coding Period [May 29 - July 14]

Week 3
[May 29 - June 4]

- Set up the project with all
configurations required.

- Kickstart with the implementation of
the transcriber.

Week 4, 5
[June 5 - June 18]

- Development of the transcriber using
AI Model and related libraries.

- implementing audio file handling,
speech-to-text transcription, and error
handling.

Week 6
[June 19 - June 25]

- Test until satisfactory result.
- Implement error handling and

exception handling for transcriber
- fine-tuning AI model.

Week 7
[June 26 - July 2]

- Complete the function Generate VTT
File, to generate WebVTT file.

- Work on uploading VTT files to Google
Cloud Storage.

Week 8, 9
[July 3 - July 14]

- Start with the implementation of the
Django Model and its “viewsets”.

- Implement the utils functions like
JSON generator for the transcriber.

First Evaluation Date [July 10]

Second Coding Period [July 14 - August 21]

Week 10
[July 14 - July 23]

- Work on the implementation of
CREATE viewset action

Week 11, 12
[July 24 - August 6] - Implementation of UPDATE and

DELETE viewset action of the Django
models

Week 13
[August 7 - August 13]

- Start working on the GET request of
the REST API to populate the editor.

- Retrieving JSON file from PostgreSQL.

Week 14, 15
[August 14 - August 27]

- Start working on the POST request of
the REST API to support “save” from
the frontend to the backend.

- Uploading the new JSON to Model and
also to the Google Cloud Storage.

Week 16
[August 28 - September 3]

- Start working on the frontend
development using VueJS.

Week 17, 18
[Sept 4 - Sept 17]

- Continue working on the frontend
development and integrating it with
the backend

- Implement the user interface for
managing transcriptions

Week 19
[Sept 18 - September 24]

- Working on the implementation of
populating the frontend editor.

- Testing the “save” endpoint.
- Work on the implementation of the

Translate viewset, which will translate
the transcription.

Week 20, 21
[September 25 - October 8]

- Test the entire system and fix any
bugs or issues.

- Optimize the system for better
performance and scalability.

Week 22, 23
[October 9 - October 22]

- Prepare the system for deployment to
production.

- Deploy the system to the production
environment and test it thoroughly.

- Provide user training and
documentation for the web
application.

About Me
I, Akash Verma, am pursuing a B.Tech in Computer Science from India. My
aspiration is to become a proficient backend programmer. I have a keen
interest in physics, mathematics, and astronomy, among other subjects. My
coding journey began with open-source contributions, and I enjoy exploring
open-source projects.

I also enjoy working with artificial intelligence and backend projects.

Proficiencies and Experience
I am skilled in Python, JavaScript and C++ language and possess a good
knowledge of data structures and algorithms. I have always been fascinated
with backend programming and have completed various useful projects.

I had the privilege of being mentored by Audrey Roy Greenfeld and Daniel Roy
Greenfeld authors of the famous Django book “Two Scoops Of Django” and
creators of the project Cookiecutter. Under their guidance, I worked as an
intern at Feldroy.com on a project called BookBuilder to automate the
book-building process using Python for their upcoming book titled “A Wedge
of Django” (a newer version yet to be released). This project aimed to take one
or more Google document files, pull them down to a server, and render them
as PDF and ePUB. I also worked on a project titled Voice-helper, which was a
minimum viable product that utilized artificial intelligence (OpenAI GPT-3) to
improve voice recognition software integration with Discord and/or other
desktop apps. Here is a demo.

I received a letter of recommendation from both authors.

I also worked for their NGO called Margarita Humanitarian Foundation and
started a project called HelpMeSpeak.

https://github.com/audreyfeldroy
https://daniel.feldroy.com/
https://daniel.feldroy.com/
https://www.feldroy.com/books/two-scoops-of-django-3-x
https://github.com/cookiecutter/cookiecutter
https://www.feldroy.com/
https://www.feldroy.com/books/a-wedge-of-django
https://www.feldroy.com/books/a-wedge-of-django
https://drive.google.com/file/d/1U0tO_O0IyE6qmrWXn-mFFnfNsooMcXMr/view
https://drive.google.com/drive/u/0/folders/19GEpd9R-zwKNXO7kT5OF3pHWfL2tLkgR
https://github.com/margaritahumanitarian
https://github.com/margaritahumanitarian/helpmespeak

Soon after, I was selected for Google Summer of Code 2022, where I worked
on the Helioviewer-project. My project was to create a Python package for
helioviewer.org, which is successfully hosted in PyPI and is used by research
students and professors. With this project, I collaborated with astrophysicists
and NASA senior software developers, which was once my dream and it was
an amazing experience because I love physics and astronomy, as I mentioned
earlier.

Why do I choose to work with Learning Equality?
Learning Equality was first introduced to me by one of my dearest friends,
Vivek Agrawal, in 2021, and I made some contributions back then. My
motivation to work for Learning Equality is that by contributing to an
organization like Learning Equality, I can help millions of children in their
learning. Millions of people will be using my implemented features, which I
can be proud of.

Along with artificial intelligence, I also love projects with backend
development. When I read about how Kolibri and Kolibri-Studio are connected,
I was surprised by how the different codebases are interconnected beautifully.

Through the implementation of this elegant backend-frontend architecture in
Kolibri and Studio. In the 'auto-generate captions and editor' project, I aim to
acquire valuable experience in my passion for Artificial Intelligence. Ever since
the commencement of my computer science education, I have been
captivated by the limitless potential of AI. Given the recent surge of AI
research and groundbreaking inventions, my curiosity to delve deeper into the
field has only intensified.

My Contributions
● Studio:

○ Split deferred_user_data into two API endpoints
○ Admin Page Editor Link Fix

● Kolibri:
○ Fixed text-align: right for rtl languages
○ Fixed view-as-grid and as-list button active state

https://summerofcode.withgoogle.com/programs/2022/organizations/openastronomy
https://github.com/Helioviewer-Project/python-api
https://pypi.org/project/hvpy/
https://github.com/learningequality/studio/pull/3975
https://github.com/learningequality/studio/pull/3958
https://github.com/learningequality/kolibri/pull/8793
https://github.com/learningequality/kolibri/pull/8719

Plans after GSoC
I have a strong interest in software architecture and its scaling and I am eager
to contribute in any way I can to the organization's future plans and
implementation of new features. I find my mentors' work very inspiring and I
would be thrilled to continue learning and gaining experience under their
guidance and expertise.

How do I plan to stay on track and finish the project
successfully?
I will study Celery docs, research more about OpenAI Whisper's increased
performance repositories available on GitHub, and solve issues in Kolibri
Studio. I will also study methods to test the accuracy of the model with the
available public Kolibri database.

Howmuch time will I devote to the project?
I am able to commit four to six hours per day to the project.

Other commitments during summer
I have no other commitments during the summer, only Google Summer of
Code.

