
Requirements

Team 7: Bermuda Digital Entertainment

Prajwal Binnamangala
Joseph Sisson

Sebastian Sobczyk
Aymeric Goransson
David Ademola
CJ Donoghue



2.(a)

To start the requirements elicitation process, we researched options and decided on the following:
- First we carried out a document analysis of the product brief. [1]
- Then had a meeting with the customer who is interested in trying to market and sell the game.

- This was a semi-structured interview in which a combination of predefined and unplanned
questions were asked [1].

- It was useful to clarify some questions the team had about the product brief and ask if any
additional requirements would be necessary.

- The next stage was to do a use case [WB.1] which is the scenario in which an actor interacts
successfully with the system, in this case, successfully plays through the game.[2]

- From this, we have picked out the requirements necessary to make that scenario successful.

We have ensured that each requirement possesses the characteristics laid out in the guidelines laid out in the
additional guidance for requirement-related activities in ISO/IEC/IEEE 12207 and ISO/IEC/IEEE 15288 [3].
These characteristics are that each requirement should be: Necessary, Appropriate, Unambiguous,
Complete, Singular, Feasible, Verifiable, Correct, Conforming. [3]

To make sure the requirements themselves are well worded, we will use the language criteria in the guidance.
This involves not using unbounded or ambiguous terms such as superlatives, vague pronouns, and subjective
language.

To present the requirements we have used a table consisting of:
- ID
- Requirement description,
- Priority for the requirement,

And added additional information afterwards for those with:
- Environmental assumptions made
- Risks
- Alternatives

In the priority column, we decided:
- High = pertaining to those in brief
- Medium = pertaining to Those in interview
- Low = Design Decisions/Implied

This is so that when implementing the requirements, we can decide which features are integral to meeting the
brief and focus on the ones with higher priority.

SSON

The brief requires us to create a game that allows users to roam around a body of water and engage in
combat with enemy colleges and ships in order to attempt to take them over all while avoiding a number of
obstacles (e.g. Lake Monsters, Bad weather etc.).

2.(b)

Risks and assumptions write up

Many of our technical and user requirements have associated risks in their implementation. For example some
of the graphical requirements have both technical and political risks since there is an inherent risk of graphical
glitches with implementation but there also may be disagreements about how certain graphics should look.
Furthermore, the implementation as a whole has a number of risks related to feasibility, inner team politics,
schedule and software.[2]



User Requirements
ID Requirement Priority Difficulty

UR.START_SCRN User can start the game via a start screen Low Low

UR.SCRN_NAME User can choose a screen name Low Low

UR.SEE_POS The user must be able to see their sprite on the lake High Low

UR.TUTORIAL The user must be able to see a tutorial Medium Medium

UR.CLG_POS User must be able to see where the colleges are relative to them Medium Medium

UR.UPDATE_POS The user must be able to move the ship on the lake High Medium

UR.COLLECT_PNTS The user must be able to collect points High Medium

UR.ATK_CLG The user must be able to attack colleges High Medium/Hi
gh

UR.COLLECT_LOOT The user must be able to collect loot High Low

UR.VIEW_PNTS User must be able to view their points/score High Low

UR.VIEW_LOOT User must be able to view their loot Low Low

UR.CPTR_CLG The user must be able to capture colleges High High

UR.SEE_TASKS The user must be able to see tasks to complete Medium Low

UR.RESTART_GAME The user must be able to restart the game at any time Medium Low

UR.FINISH_GAME The user must be able to finish the game by returning ‘home’ Low Medium

UR.LOSE_GAME The user must be able to lose/die Low Medium

UR.POWER_UP The user should be able to pick power ups during the game which
would boost their speed, health etc

High Medium

UR.ENEMY_SHIP The user must be able to combat with enemy ships High High

UR.OBSTACLES The user must encounter a wide range of obstacles like dangerous
waters, shipwrecks etc.

High Medium

UR.SHOP The user must be able to spend on weapons, new provisions,
repairing ships etc using plunder

High Low

UR.SAVE_GAME The user should be able to save game progress Medium High

UR.BAD_WEATHER The user must encounter weather/condition change such as fog or
wind

High Medium

UR.HELP The user must be able to see key information about gameplay High Low

Software requirements

Functional requirements

ID Requirement Priority Difficulty

FR.START.SCRN Software must display a start screen Low Low

FR.START.START Start screen shall have a ‘start’ button Low Low

FR.START.EXIT Start screen shall have an ‘exit’ button Low Low



FR.START.NAME Start screen shall have a text box for entering a screen name Low Low

FR.DISPLAY.GUI The software must render environment with a Graphical user interface High Low

FR.DISPLAY.EDGE The software must display a lake with boundaries High Low

FR.DISPLAY.SHIP The software must display the user in the form of a privateer sprite High Low

FR.DISPLAY.CLG The software must display colleges High Low

FR.DISPLAY.DOCK The software must display other ships docked at colleges Medium Low

FR.DISPLAY.HUD The software must include loot, points health and a mini map in HUD Medium Low

FR.DISPLAY.CAM The software’s camera must follow the users sprite Medium Medium

FR.TUTORIAL The software must display a tutorial embedded within the gameplay Medium Medium

FR.FREEMOVE The software must allow the users sprite to freely move around the
lake via input

High High

FR.COLLISION The software must implement a object collision system Medium High

FR.BOUNDARY The software must implement a boundary to the gameplay area High Medium

FR.AWRD.POINTS The software must award points passively and for completing
tasks/defeating colleges.

High Medium

FR.AWRD.GOLD The software must award gold for completing tasks/defeating
colleges.

High Medium

FR.ATTACKCURSO
R

The users sprite must attack the colleges when they are clicked on High Medium

FR.CLG_ATTACK The college must attack the player (added 25/01/22 due to missed
requirement)

High Medium

FR.CLG_HEALTH The college must lose health when attacked Low Medium

FR.CLG_CONVERT When college loses all health, college becomes friendly Medium High

FR.CLG_INFO College must be implemented with [.1] colour, [.2] name and [.3]
friendly docked boats [4].Health [5]. Plunder

High High

FR.OPTNL_TASKS The game must generate a series of optional tasks that the user may
complete

Medium Medium

FR.KILL_SCRN The game must display a kill screen on [.1] victory, [.2] loss, [.3] on
restart button

Low Low/Mediu
m

FR.DIFFICULTY_LVL Implement support for different levels of difficulty. High Medium

Non Functional requirements

ID Requirement Priority Difficulty

NFR.NETWORK The program shall not connect to the network High Low

NFR.STABLE The Game shall be stable and not crash High Medium

NFR.GAME_TIME The game shall only last 5-10 minutes
- Fit criteria: 9/10 run throughs will last less than 10 minutes

High Low

NFR.UPDATE Updated game files should be easily available Low Low

NFR.CVD The game must be accessible to those with colour vision deficiency Medium Medium



NFR.LOAD_TIME The software must load quickly
- Fit criteria: The game must load in < under 30 seconds

Medium Low

NFR.SIMPLICITY The game must be simple enough/have a good enough tutorial to be
able to be played by those with no prior experience

- Fit criteria: 9/10 players will be able to understand the game by
the end of the tutorial

Medium Medium

NFR.MODULARIS
E

The code must be separated in two parts for unit testing - one part
contains the code required for UI and the other that implements them.

Medium Medium

NFR.UNITTEST The software must come with its own set of unit test and all functional
parts of the game must be unit testable

Constraint requirements

ID Requirement Priority Difficulty

CR.RESOLUTION The game should be able to be displayed on range of resolutions and
make good use of space

- Fit criteria: Display on 13”-27” screens, test with 13”, 47”

Medium Medium

CR.LOW_SPEC The game must run on a system with minimum specs 4gb RAM, a
standard UK keyboard and mouse

- Fit criteria: Game must be playable on system with these specs

Medium Low

CR.DEADLINE Project must be completed by 04/05/2022 High Medium

Environmental Factors:

- NFR.GAME_TIME - The game will be used at an open day where time is limited and fast throughput of
people is preferable

- NFR.UPDATE - The user may have little to no technical experience, eg. with github and creating JAR files.
- NFR.SIMPLICITY, UR.TUTORIAL, FR.TUTORIAL - The user may have little to no game playing experience.
- UR.RESTART_GAME The user must be able to restart the game at any time

Associated Risks/Further Comments:

● UR.START_SCRN: Any offensive screen names or ones that contain profanity may have to be filtered out.
This could be mitigated by a potential filter in the screen box.

● UR.CLG_POS: Arrows could be confusing for users, especially colourblind ones and will need identifiers for
friendly/enemy colleges.An alternative to this could be via the MiniMap

● UR.VIEW_LOOT: May take up too much time while being low on our priority list.
● UR.SEE_TASKS: Tasks could come across as vague and confusing for some users.
● For any requirements that are about display or graphics there is a potential for internal disagreements about

how the UI should look, resulting in unnecessary lost time.
● FR.COLLISION: Collision systems can often result in bugs and glitches with clipping resulting in a lowered

user experience.
● FR.FREEMOVE: Controls must be intuitive and movement must be seamless.
● FR.AWRD.POINTS/FR.AWRD.GOLD: Risk of differences between points and gold being unclear to users.
● NFR.STABLE: Although the game has low machine requirements, it is hard for us to control the number of

crashes that may occur.
● NFR.GAME_TIME: There may be a situation in which we compromise gameplay elements in order to reduce

game time.
● CR.RESOLUTION: Risk of graphical glitches in scaling if not implemented properly.
● CR.LOW_SPEC: Performance cap may limit our sprite usage as too many may cause performance issues on

lower spec machines

Bibliography



[1]
M. Yousuf and M. Asger, “Comparison of Various Requirements Elicitation Techniques,” International
Journal of Computer Applications (0975 – 8887), Apr. 2015.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.5985&rep=rep1&type=pdf.

[WB.1] https://engteam14.github.io/usecase

[2]
“ISO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes --
Requirements engineering,” ISO/IEC/IEEE 29148:2018(E), vol. 1–104, 2019, doi:
10.1109/ieeestd.2018.8559686.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8559686

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.5985&rep=rep1&type=pdf
https://engteam14.github.io/usecase
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8559686

