

CS 186 - Fall 2024
Exam Prep Section 10

Parallel Query Processing

1 Types of Parallelism
For each of the following scenarios, state whether it is an example of:

• Inter-query parallelism

• Intra-query, inter-operator parallelism

• Intra-query, intra-operator parallelism

• No parallelism

1. A query with a selection, followed by a projection, followed by a join, runs on a single machine with
one thread.
Answer: No parallelism. It might look like a pipeline, but at any given point in time there is only one
thing happening, since there is only one thread.

2. Same as before, but there is a second machine and a second query, running independently of the
first machine and the first query.
Answer: Inter-query parallelism.

3. A query with a selection, followed by a projection, runs on a single machine with multiple threads;
one thread is given to the selection and one thread is given to the projection.
Answer: Intra-query, inter-operator parallelism.

4. We have a single machine, and it runs recursive hash partitioning (for external hashing) with one
thread.
Answer: No parallelism, because there is only one machine and one thread. Don’t confuse this with
parallel hashing!

5. We have a multi-machine database, and we are running a join over it. For the join, we are running
parallel sort-merge join.
Answer: Intra-query, intra-operator parallelism. We have a single query and a single operator, but
that single operator is going to do multiple things at the same time (across different machines).

2 Partitioning for Parallelism
1. Suppose we have a table of size 50,000 KB, and our database has 10 machines. Each machine has

100 pages of buffer, and a page is 4 KB.
We would like to perform parallel sorting on this table, so first, we perfectly range partition the data.
Then on each machine, we run standard external sorting.
How many passes does this external sort on each machine take?
Answer: 2 passes.
After range partitioning, each table will have 5,000 KB of data, or 1,250 pages. With 100 pages of
buffer, this will take 2 passes to sort.

2. Suppose we were doing parallel hash join. The first step is to partition the data across the machines,
and we usually use hash partitioning to do this.
Would range partitioning also work? What about round-robin partitioning?
Answer: Range partitioning also works, because items with the same key still end up on the same
machine as required. Round-robin partitioning does not do that, so it does not work.

3. Suppose we have a table of 1200 rows, perfectly range-partitioned across 3 machines in order. We
just bought a 4th machine for our database, and we want to run parallel sorting using all 4 machines.
The first step in parallel sorting is to repartition the data across all 4 machines, using range
partitioning. (The new machine will get the last range.)
For each of the first 3 machines, how many rows will it send across the network during the
repartitioning? (You can assume the new ranges are also perfectly uniform.)
Answer: 100 rows, 200 rows, and 300 rows.
The original partitions were 3 ranges of 400 rows each; the new 4 ranges will have 300 rows each.
The first machine held the first 400 rows originally, and now only needs to hold the first 300. It will
send the remaining 100 rows over the network (to machine 2).
The second machine held rows 401-800 initially, but now needs to hold rows 301-600. It will send
rows 601-800 (200 rows) to machine 3.
The third machine held rows 801-1200 initially, and similarly needs to send rows 901-1200 (300
rows) to machine 4.

3 Parallel Query Processing
Suppose we have 4 machines, each with 10 buffer pages. Machine 1 has a Students table which consists
of 100 pages. Each page is 1 KB, and it takes 1 second to send 1 KB of data across the network to
another machine.

1. How long would it take to send the data over the network after we uniformly range partition the 100
pages? Assume that we can send data to multiple machines at the same time.
Answer: 25 seconds.
After we uniformly partition our data, Machine 1 will send 25 pages to Machines 2, 3, and 4. It will
take 25 seconds to finish sending these pages to each machine if we send the pages to each
machine at the same time.

2. Next, imagine that there is another table, Classes, which is 10 pages. Using just one machine, how
long would a BNLJ take if each disk access (read or write) takes 0.5 seconds?
Answer: 105 seconds. ,
BNLJ will require 10 + ceil(10/8) * 100 = 210 I/Os, which will take 105 seconds.

3. Now assume that the Students table has already been uniformly range partitioned across the four
machines, but Classes is only on Machine 1. How long would a broadcast join take if we perform
BNLJ on each machine? Do not worry about the cost of combining the output of the machines.
Answer: 40 seconds.
First, we must broadcast the Classes table to each machine, which will take 10 seconds (since we
send the table to each machine at the same time). Next, we will perform BNLJ on each machine,
which requires 10 + ceil(10/8) * 25 = 60 I/Os, or 30 seconds. In total, the time required to send the
data over the network and perform the join will be 40 seconds.

4. Which algorithm performs better?
Answer: Broadcasting the Classes table and performing a parallel BNLJ runs faster than just using
one machine, even with the additional time required to send the table over the network.

5. Knowing that the Students table was range partitioned, how can we improve the performance of the
join even further?
Since we know the Students table was range partitioned, we can also range partition the Classes
table on the same column and only send the corresponding partitions to each machine. This should
lower the network cost and decrease the number of disk I/Os.

