
 Problem 1:
 

 Since the maximum element contributes to two maximums so the two maximum
elements must be equal.
You can just print one maximum and two smallest elements.

 while (t--)
 {
 vector<int> v(3);
 cin >> v[0] >> v[1] >> v[2];
 sort(v.begin(), v.end());
 if (v[2] == v[1])
 {
 cout << "YES" << endl;
 cout << v[2]<<" " << v[0]<<" " << v[0] << endl;
 }
 else
 cout << "NO" << endl;
 }

 Problem 2 :
Just take the first occurrence of each element

 

 while (t--)
 {
 cin >> n;
 set<int> s;
 vector<int> v;
 

 for (int i = 0; i < 2 * n; ++i)
 {
 cin >> n0;
 if (s.find(n0) == s.end())
 {
 v.push_back(n0);
 s.insert(n0);
 }
 }
 for (int i = 0; i < n; ++i)
 cout << v[i]<<" ";
 cout << endl;
 }



 Problem 3:
 

 while (t--)
 {
 cin >> n;
 vector<int> v(n);
 //just iterate from the last
 //either all the elements must be in non-increasing order from the last
 //or they must be non-decreasing and then non-increasing
 for (int i = 0; i < n; ++i)
 {
 cin >> v[i];
 

 }
 //skip all the non-increasing elements first
 int i = n - 1;
 while (i > 0)
 {
 if (v[i] <= v[i - 1])
 --i;
 else
 break;
 }
 //after that skip all the non-decreasing elements
 while (i > 0)
 {
 if (v[i] >= v[i - 1])
 --i;
 else
 break;
 }
 //finally these prefix elements must be removed
 cout << (i) << endl;
 }



Problem 4:
// I have used the brute force approach here
//Recursion is used
//either you need to fill first half with a or the last half

ll ans;
 void make(string s, char a,ll count)
 {
 //this is to handle the base case
 //if the size of string is 1 then we have completed
 // so count will give the ans and take the minimum of those
 if (s.length() == 1)
 {
 if (s[0] != a)
 ++count;
 ans = min(ans, count);
 return;
 }
 //saving the count for next half
 ll savc = count;
 //changing the first half
 for (int i = 0; i < s.length()/2; ++i)
 if (s[i] != a)
 ++count;
 //since we have changed the first half
 //we need to make the last half c+1
 make(s.substr(s.length() / 2, s.length() / 2), a + 1, count);
 //changing the second half
 for (int i = s.length()/2; i < s.length(); ++i)
 if (s[i] != a)
 ++savc;
 //since you have changed the second half
 //make the first half c+1
 make(s.substr(0, s.length() / 2), a + 1, savc);
 }
 

 int main()
 {
 IOS;
 ll n, c0, c1, c2, t, sum;
 cin >> t;
 string s;
 while (t--)
 {
 cin >> n;
 cin >> s;
 ans = INT_MAX;



 make(s, 'a', 0);
 cout << ans << '\n';
 }
 return 0;
 }

Problem 5:
First you need know about topological sort to understand my solution
//mycode for topological sort using indegree

 vector<int> topological_sort(vector<vector<int>>& graph,
int n,vector<int>& indegree)

 {
 vector<int> ans;
 stack<int> s;
 for (int i = 0; i < n; ++i)
 if (indegree[i] == 0)
 s.push(i);
 while (!s.empty())
 {
 int x = s.top();
 s.pop();
 ans.push_back(x);
 for (auto& adj : graph[x])
 if (--indegree[adj] == 0)
 s.push(adj);
 }
 return ans;
 }
 

//Then you just need to get the topological sort using the given directed edges
//if we can’t get the topological sort including all the vertices he answer is NO
//otherwise the answer is yes and direct the undirected edges in the order of topological sort



 int main()
 {
 IOS;
 int t, n,m,c,x,y;
 cin >> t;
 while (t--)
 {
 cin >> n>>m;
 //to store he indegree of vertices
 vector<int> indegree(n,0);
 //to store the adjacency list of graph
 vector<vector<int>> graph(n);
 //to store the undirected edges
 vector<vector<int>> undirected_edges;
 for (int i = 0; i < m; ++i)
 {
 cin >> c >> x >> y;
 //converting 1 to n into 0 to n-1
 --x; --y;
 //if directed edge include it in graph
 if (c)
 {
 graph[x].push_back(y);
 ++indegree[y];
 }
 //store undirected edges for future reference
 else
 undirected_edges.push_back({ x,y });
 }
 //get the topological sort of the graph
 vector<int> ans = topological_sort(graph, n,

indegree);
 //if the topological sort doesn’t include all vertices that

means the graph has a cycle
 if (ans.size() != n)
 {
 cout << "NO" << endl;
 continue;
 }



 //else the answer is yes
 cout << "YES" << endl;
 //print the directed edges
 for (int i = 0; i < n; ++i)
 for (int j = 0; j < graph[i].size(); ++j)
 cout << i + 1 << " " << graph[i][j] + 1

<< endl;
 //for checking the order of vertices in topological sort
 vector<int> check(n);
 for (int i = 0; i < n; ++i)
 check[ans[i]] = i;
 for (auto& i : undirected_edges)
 {
 //if i[1] comes before i[0] in topological sort
 if (check[i[0]] > check[i[1]])
 cout << i[1] + 1 << " " << i[0] + 1 <<

endl;
 //if i[0] comes before i[1]
 else
 cout << i[0] + 1 << " " << i[1] + 1 <<

endl;
 }
 }
 return 0;
 }

// If anyone has any confusion comment down I will try to help

We can discuss in this discord server as well
https://discord.gg/en2AK26
https://discord.gg/N8SbEqh

//I will post the link to the whole source code
1.https://codeforces.com/contest/1385/submission/87083896
2.https://codeforces.com/contest/1385/submission/87092072
3.https://codeforces.com/contest/1385/submission/87103588
4.https://codeforces.com/contest/1385/submission/87136548

https://discord.gg/en2AK26
https://discord.gg/N8SbEqh
https://codeforces.com/contest/1385/submission/87083896
https://codeforces.com/contest/1385/submission/87092072
https://codeforces.com/contest/1385/submission/87103588
https://codeforces.com/contest/1385/submission/87136548


5.https://codeforces.com/contest/1385/submission/87239820

https://codeforces.com/contest/1385/submission/87239820

