
​ Problem 1:
​

​ Since the maximum element contributes to two maximums so the two maximum
elements must be equal.
You can just print one maximum and two smallest elements.

​ while (t--)
​ {
​ vector<int> v(3);
​ cin >> v[0] >> v[1] >> v[2];
​ sort(v.begin(), v.end());
​ if (v[2] == v[1])
​ {
​ cout << "YES" << endl;
​ cout << v[2]<<" " << v[0]<<" " << v[0] << endl;
​ }
​ else
​ cout << "NO" << endl;
​ }

​ Problem 2 :
Just take the first occurrence of each element

​

​ while (t--)
​ {
​ cin >> n;
​ set<int> s;
​ vector<int> v;
​

​ for (int i = 0; i < 2 * n; ++i)
​ {
​ cin >> n0;
​ if (s.find(n0) == s.end())
​ {
​ v.push_back(n0);
​ s.insert(n0);
​ }
​ }
​ for (int i = 0; i < n; ++i)
​ cout << v[i]<<" ";
​ cout << endl;
​ }



​ Problem 3:
​

​ while (t--)
​ {
​ cin >> n;
​ vector<int> v(n);
​ //just iterate from the last
​ //either all the elements must be in non-increasing order from the last
​ //or they must be non-decreasing and then non-increasing
​ for (int i = 0; i < n; ++i)
​ {
​ cin >> v[i];
​

​ }
​ //skip all the non-increasing elements first
​ int i = n - 1;
​ while (i > 0)
​ {
​ if (v[i] <= v[i - 1])
​ --i;
​ else
​ break;
​ }
​ //after that skip all the non-decreasing elements
​ while (i > 0)
​ {
​ if (v[i] >= v[i - 1])
​ --i;
​ else
​ break;
​ }
​ //finally these prefix elements must be removed
​ cout << (i) << endl;
​ }



Problem 4:
// I have used the brute force approach here
//Recursion is used
//either you need to fill first half with a or the last half

ll ans;
​ void make(string s, char a,ll count)
​ {
​ //this is to handle the base case
​ //if the size of string is 1 then we have completed
​ // so count will give the ans and take the minimum of those
​ if (s.length() == 1)
​ {
​ if (s[0] != a)
​ ++count;
​ ans = min(ans, count);
​ return;
​ }
​ //saving the count for next half
​ ll savc = count;
​ //changing the first half
​ for (int i = 0; i < s.length()/2; ++i)
​ if (s[i] != a)
​ ++count;
​ //since we have changed the first half
​ //we need to make the last half c+1
​ make(s.substr(s.length() / 2, s.length() / 2), a + 1, count);
​ //changing the second half
​ for (int i = s.length()/2; i < s.length(); ++i)
​ if (s[i] != a)
​ ++savc;
​ //since you have changed the second half
​ //make the first half c+1
​ make(s.substr(0, s.length() / 2), a + 1, savc);
​ }
​

​ int main()
​ {
​ IOS;
​ ll n, c0, c1, c2, t, sum;
​ cin >> t;
​ string s;
​ while (t--)
​ {
​ cin >> n;
​ cin >> s;
​ ans = INT_MAX;



​ make(s, 'a', 0);
​ cout << ans << '\n';
​ }
​ return 0;
​ }

Problem 5:
First you need know about topological sort to understand my solution
//mycode for topological sort using indegree

​ vector<int> topological_sort(vector<vector<int>>& graph,
int n,vector<int>& indegree)

​ {
​ vector<int> ans;
​ stack<int> s;
​ for (int i = 0; i < n; ++i)
​ if (indegree[i] == 0)
​ s.push(i);
​ while (!s.empty())
​ {
​ int x = s.top();
​ s.pop();
​ ans.push_back(x);
​ for (auto& adj : graph[x])
​ if (--indegree[adj] == 0)
​ s.push(adj);
​ }
​ return ans;
​ }
​

//Then you just need to get the topological sort using the given directed edges
//if we can’t get the topological sort including all the vertices he answer is NO
//otherwise the answer is yes and direct the undirected edges in the order of topological sort



​ int main()
​ {
​ IOS;
​ int t, n,m,c,x,y;
​ cin >> t;
​ while (t--)
​ {
​ cin >> n>>m;
​ //to store he indegree of vertices
​ vector<int> indegree(n,0);
​ //to store the adjacency list of graph
​ vector<vector<int>> graph(n);
​ //to store the undirected edges
​ vector<vector<int>> undirected_edges;
​ for (int i = 0; i < m; ++i)
​ {
​ cin >> c >> x >> y;
​ //converting 1 to n into 0 to n-1
​ --x; --y;
​ //if directed edge include it in graph
​ if (c)
​ {
​ graph[x].push_back(y);
​ ++indegree[y];
​ }
​ //store undirected edges for future reference
​ else
​ undirected_edges.push_back({ x,y });
​ }
​ //get the topological sort of the graph
​ vector<int> ans = topological_sort(graph, n,

indegree);
​ //if the topological sort doesn’t include all vertices that

means the graph has a cycle
​ if (ans.size() != n)
​ {
​ cout << "NO" << endl;
​ continue;
​ }



​ //else the answer is yes
​ cout << "YES" << endl;
​ //print the directed edges
​ for (int i = 0; i < n; ++i)
​ for (int j = 0; j < graph[i].size(); ++j)
​ cout << i + 1 << " " << graph[i][j] + 1

<< endl;
​ //for checking the order of vertices in topological sort
​ vector<int> check(n);
​ for (int i = 0; i < n; ++i)
​ check[ans[i]] = i;
​ for (auto& i : undirected_edges)
​ {
​ //if i[1] comes before i[0] in topological sort
​ if (check[i[0]] > check[i[1]])
​ cout << i[1] + 1 << " " << i[0] + 1 <<

endl;
​ //if i[0] comes before i[1]
​ else
​ cout << i[0] + 1 << " " << i[1] + 1 <<

endl;
​ }
​ }
​ return 0;
​ }

// If anyone has any confusion comment down I will try to help

We can discuss in this discord server as well
https://discord.gg/en2AK26
https://discord.gg/N8SbEqh

//I will post the link to the whole source code
1.https://codeforces.com/contest/1385/submission/87083896
2.https://codeforces.com/contest/1385/submission/87092072
3.https://codeforces.com/contest/1385/submission/87103588
4.https://codeforces.com/contest/1385/submission/87136548

https://discord.gg/en2AK26
https://discord.gg/N8SbEqh
https://codeforces.com/contest/1385/submission/87083896
https://codeforces.com/contest/1385/submission/87092072
https://codeforces.com/contest/1385/submission/87103588
https://codeforces.com/contest/1385/submission/87136548


5.https://codeforces.com/contest/1385/submission/87239820

https://codeforces.com/contest/1385/submission/87239820

