

docs.computeblade.com

https://docs.computeblade.com/

Compute Blade RC2

Main Features

NVMe Boot
Works out of the box on the latest (after July 2021) Raspberry Pi CM4. If you're not using the
latest Raspberry Pi CM4, you’ll need to update the bootloader specifying the correct boot
order.
Use standoff for the NVMe drive, 2mm high.

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-nvme.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-nvme.adoc

UART
This is the same UART0 port, but with the big one, you can use 5V in/out (in "in" mode
ONLY if the Blade has no other power source)*
Connect "correctly":
RX -> TX
TX -> RX
GND -> flower pot GND

in config:

enable_uart=1

You can change the bootloader setting to enable UART from the boot.
Add this line to boot.conf and flash the bootloader:

BOOT_UART=1

Follow this link to the Raspberry Pi Documentation BOOT_UART value

*it’ll work and probably won't burn your house down, but it's not exactly FCC or CE
compliant.

USB-A
To turn on the USB-A port to access the operating system on the Blade, add the following
line to the config.txt:

dtoverlay=dwc2,dr_mode=host

Stealth mode
Stealth mode will turn off all but the Digital LEDs at once. It is implemented via a GPIO and a
transistor, which means it won't harm the Blade functionality. It is possible to change the
brightness using software PWM however in some cases, it may not work perfectly.

Compute Blade RC2 cannot turn off the LEDs on the Ethernet port this way, but they can be
turned off in other ways. The Digital LEDs will also not be turned off due to technical
limitations, but since they are controlled from the GPIO this should not be a problem.

Initialization in the terminal:

echo "21" > /sys/class/gpio/export​
echo "out" > /sys/class/gpio/gpio21/direction

To turn off the LEDs:

echo "1" > /sys/class/gpio/gpio21/value

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#BOOT_UART

To turn on the LEDs:

echo "0" > /sys/class/gpio/gpio21/value

To do this immediately after booting the OS, you can add these commands to /etc/rc.local:

sudo nano /etc/rc.local

#!/bin/sh -e​
#​
rc.local​
#​
​
echo "21" > /sys/class/gpio/export​
sleep 0.1​
echo "out" > /sys/class/gpio/gpio21/direction​
echo "1" > /sys/class/gpio/gpio21/value​
sleep 0.1​
​
exit 0

Disable digital LED:

from time import sleep​
import board​
import neopixel​
import psutil​
import RPi.GPIO as GPIO​
​
g,r,b = 0,0,0​
LEDbrightness = 0.2​
​
GPIO.setwarnings(False)​
GPIO.setmode(GPIO.BCM)​
​
pixels = neopixel.NeoPixel(​
 board.D18, 2, brightness=LEDbrightness, auto_write=False,

pixel_order=neop>​
)​
​
pixels[0] = (0, 0, 0)​
pixels[1] = (0, 0, 0)​
pixels.show()

Edge button

A button is connected to GPIO20 in the Rasberry PI compute module and can be
customized as you like.

Python example:

import RPi.GPIO as GPIO​
import time​
​
GPIO.setmode(GPIO.BCM)​
GPIO.setup(20, GPIO.IN, pull_up_down=GPIO.PUD_UP) #Button to GPIO20​
​
try:​
 while True:​
 button_state = GPIO.input(20)​
 if button_state == False:​
 print('Button Pressed...')​
 time.sleep(0.2) ​

except:​
 GPIO.cleanup()

Digital LEDs
The blade has two digital LEDs mounted in series. A square yellow LED is located on the top
of the board, and a green LED is located on edge. Both LEDS are connected to GPIO18 on
the compute module.

Preparation:
You'll need to install the Adafruit_Blinka library that provides CircuitPython support in Python:
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspbe
rry-pi

And then NeoPixel Library:
https://learn.adafruit.com/neopixels-on-raspberry-pi/python-usage

Newer CM4 Revisions aren’t included in rpi-ws281x yet (e.g. Compute Module 4 Rev 1.1). If
you get “RuntimeError: ws2811_init failed with code -3 (Hardware revision is not supported)”,
you need to follow these steps
https://github.com/rpi-ws281x/rpi-ws281x-python/issues/56#issuecomment-753320723

Here is an example Python script that will show you the CPU temperature on the square
LED and the CPU load on edge LED: And use the button for blade identification:
Demo

from time import sleep​
import board​
import neopixel​
import psutil​
import RPi.GPIO as GPIO​
​
g,r,b = 0,0,0​
mintemp = 40 #Temperature Boundaries. Closer to this is green​
maxtemp = 70 #Temperature Boundaries. Closer to this is red​

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/neopixels-on-raspberry-pi/python-usage
https://twitter.com/Merocle/status/1569364547143897088?s=20&t=DmDRg0925cGQrCRTUISCFg

LEDbrightness = 0.2 #Yes, you can change the brightness here​
Button = 20

flag = 0​
​
GPIO.setwarnings(False)​
GPIO.setmode(GPIO.BCM)​
GPIO.setup(Button,GPIO.IN,pull_up_down=GPIO.PUD_UP)​
pixels = neopixel.NeoPixel(​
 board.D18, 2, brightness=LEDbrightness, auto_write=False,

pixel_order=neopixel.GRB​
)​
​
def show(percent, pixel):​
 a = int(round((510 / 100) * percent))​
 if a > 255:​
 r = 255​
 g = 510 - a​
 else:​
 r = a​
 g = 255​
 pixels[pixel] = (g, r, b)​
 pixels.show()​
return print('showed', a, 'on', pixel)​
​
while True:​
 temp =

int(round(psutil.sensors_temperatures()["cpu_thermal"][0].current))​
print('temp = ', temp)​
 button_state = GPIO.input(Button)​
 if mintemp <= temp <= maxtemp:​
 temp = temp - mintemp​
 mtemp = maxtemp - mintemp​
 c = int(round((temp / mtemp) * 100))​
 show(c, 0)​
 elif temp < mintemp:​
 pixels[0] = (255, 0, 0)​
 else:​
 pixels[0] = (0, 255, 0)​
​
 sleep(0.1)​
​
 load = psutil.cpu_percent()​
 # print('load = ', load)​
 show(load, 1)​
 sleep(0.1)​
​

 if button_state == 0:​
 sleep(0.5)​
 if flag == 0:​
 flag = 1​
 else:​
 flag = 0​
 if flag == 1:​
 print('Blade ID is active')​
 pixels[1] = (0, 0, 255)​
​
 else:​
 print('Blade ID isn\'t active')

Square connector at the rear of the Blade

​

The square connector on the Compute Blade’s main purpose is to connect a fan unit. The
output ifs 5V and should work with any fan that supports 5V. The speed of the fan can be
controlled with PWM.

But it can be used to control any 5v PWM fan. Or as an additional UART port (UART5 on
CM4)
Warning: Take care when wiring into this connector!

GND GPIO13

5V GPIO12

UART connection (RP2040 Fan Unit)

On the Blade
Add to Config.txt

dtoverlay=uart5

Console:

sudo apt-get install cu​
sudo chmod 666 /dev/ttyAMA1​
sudo cu -l /dev/ttyAMA1 -s 115200

Fan Unit code:
https://github.com/merocle/FanUnit

Notes:

~.

to close cu session

jobs -l

to check if session in the background (in case “cu: /dev/ttyAMA1: Line in use” error)

fg

to return to current opened session

https://github.com/merocle/FanUnit

PWM fan (non-smart Fan Unit)
When using a dumb Fan Unit
the fan is controlled from the left blade in the pair

Examples:

wget

https://raw.githubusercontent.com/DriftKingTW/Raspberry-Pi-PWM-Fan-Contr

ol/master/read_fan_speed.py​
python read_fan_speed.py

You need to change in the script:​
TACH = 13

wget

https://raw.githubusercontent.com/DriftKingTW/Raspberry-Pi-PWM-Fan-Contr

ol/master/fan_control.py​
python fan_control.py

You need to change in the script:
FAN_PIN = 12

to run the script in the background quickly, run `nohup python fan_control.py`

Links:
https://blog.driftking.tw/en/2019/11/Using-Raspberry-Pi-to-Control-a-PWM-Fan-and-Monitor-i
ts-Speed/

Ethernet with PoE
1Gbit with Power over Ethernet
802.3at Type 2, PoE+ (up to 30W)
Compatible with 802.3af (802.3at Type 1), PoE (up to 15W)

PoE determining

You can use it to monitor power supply failures or limit yourself in overclocking
LED with "+" and GPIO23 indicate the operating mode:

Green - 5-volt present, PoE or USB-C or 5v direct
GPIO23 Low

https://blog.driftking.tw/en/2019/11/Using-Raspberry-Pi-to-Control-a-PWM-Fan-and-Monitor-its-Speed/
https://blog.driftking.tw/en/2019/11/Using-Raspberry-Pi-to-Control-a-PWM-Fan-and-Monitor-its-Speed/

Orange (Green and Red together) - 802.3at Type 2 operating mode, PoE+
GPIO23 High
Blade can take up to 30W power (22W for RC2)

Compute blade headers
You can use Real-Time Clocks (RTCs) for the Raspberry Pi and other compatible modules.
The section will be updated

This is the top part of the standard GPIO connector of the Raspberry Pi (upside down)

picture source

RTC
in config:

dtoverlay=i2c-rtc,ds3231​
dtparam=i2c_arm=on

https://spellfoundry.com/sleepy-pi/setting-up-the-real-time-clock-on-raspbian-jessie/

in terminal:

sudo i2cdetect -l|sort​
sudo i2cdetect -y 1

https://learn.microsoft.com/de-de/windows/iot-core/learn-about-hardware/pinmappings/pinmappingsrpi
https://spellfoundry.com/sleepy-pi/setting-up-the-real-time-clock-on-raspbian-jessie/

sudo apt-get -y remove fake-hwclock​
sudo update-rc.d -f fake-hwclock remove​
sudo systemctl disable fake-hwclock

edit the file:

sudo nano /lib/udev/hwclock-set

#!/bin/sh​
Reset the System Clock to UTC if the hardware clock from which it​
was copied by the kernel was in localtime.​
​
dev=$1​
​
#if [-e /run/systemd/system] ; then​
exit 0​
#fi​
​
if [-e /run/udev/hwclock-set]; then​
 exit 0​
fi​
​
if [-f /etc/default/rcS] ; then​
 . /etc/default/rcS​
fi​
​
These defaults are user-overridable in /etc/default/hwclock​
BADYEAR=no​
HWCLOCKACCESS=yes​
HWCLOCKPARS=​
HCTOSYS_DEVICE=rtc0​
if [-f /etc/default/hwclock] ; then​
 . /etc/default/hwclock​
fi​
​
if [yes = "$BADYEAR"] ; then​
/sbin/hwclock --rtc=$dev --systz --badyear​
 /sbin/hwclock --rtc=$dev --hctosys --badyear​
else​
/sbin/hwclock --rtc=$dev --systz​
 /sbin/hwclock --rtc=$dev --hctosys​
fi​
​
Note 'touch' may not be available in initramfs​
> /run/udev/hwclock-set​

Check:

timedatectl status

Read:

sudo hwclock -r

Write:

sudo hwclock -w​
sudo hwclock --verbose

ZYMKEY 4i

https://docs.zymbit.com/getting-started/zymkey4/quickstart/

Compute Blade TPM and Dev

TPM
In config:

dtparam=spi=on​
dtoverlay=tpm-slb9670

To check
In terminal:

mkdir infineon-tpm ​
git clone https://github.com/infineon/eltt2​
cd eltt2​
make​
sudo ./eltt2 -g​
cd ..

For more information, please see these links:
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-Quick-Start-Guide-AdditionalProductIn
formation-v03_00-EN.pdf?fileId=5546d4626cb27db2016d05dfaac31284

https://docs.zymbit.com/getting-started/zymkey4/quickstart/
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-Quick-Start-Guide-AdditionalProductInformation-v03_00-EN.pdf?fileId=5546d4626cb27db2016d05dfaac31284
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-Quick-Start-Guide-AdditionalProductInformation-v03_00-EN.pdf?fileId=5546d4626cb27db2016d05dfaac31284

https://aws.amazon.com/ru/blogs/iot/using-a-trusted-platform-module-for-endpoint-device-se
curity-in-aws-iot-greengrass/

Compute Blade Dev additional features

MicroSD card slot
The MicroSD card slot only works with the Raspberry Pi CM4 lite

HDMI
The HDMI port is mostly designed for debugging. The port is fragile, so be careful. If
possible, use a small flexible cable. If it does break off take care to ensure the board isn’t
shorted.

https://aws.amazon.com/ru/blogs/iot/using-a-trusted-platform-module-for-endpoint-device-security-in-aws-iot-greengrass/
https://aws.amazon.com/ru/blogs/iot/using-a-trusted-platform-module-for-endpoint-device-security-in-aws-iot-greengrass/

Write Protection, Wireless, and Bluetooth Switch
You are able to turn off wireless, Bluetooth and enable the bootloader write protection

The following pins are:
1 - Write Protection (left - disabled)
2 - Wi-Fi (left - enabled)
3 - Bluetooth (left - enabled)

Switch only when the Blade is off

To activate write protection, you also need to flash the bootloader. Just follow the steps in the
official documentation. Link

USB-C
The compute module can only operate one USB port at a time. There is a switch to enable
which port you would like to utilize.

https://www.raspberrypi.com/documentation/computers/compute-module.html#cm4bootloader

Flashing the bootloader

To flash the bootloader, you need to turn on the Blade with the nRPIBOOT button pressed (a
second after turning the Blade on, you can already release it).
You can turn it on from USB-C or PoE; it doesn't matter. To flash, you need to plug in a
USB-C and switch the switch to USB-C (the switch can be switched during operation).

On a computer with Linux to which you will connect the Blade:

sudo apt install libusb-1.0-0-dev​
git clone --depth=1 https://github.com/raspberrypi/usbboot​
cd usbboot​
make​
cd recovery​
nano boot.conf

change the line

BOOT_ORDER=0xf16

Optionally, I also recommend correcting 0 to 1 on this line to enable UART on boot

BOOT_UART=1

That means:
Try NVMe first, followed by SD then repeat.
You can find more about boot order by following this link.

[optional]
to update to the latest bootloader version use repo and the right link:

rm -f pieeprom.original.bin​
curl -L -o pieeprom.original.bin

https://github.com/raspberrypi/rpi-eeprom/raw/4c5aebdb200bc9a2ffd2a0158e

fffb9603c33be7/firmware-2711/latest/pieeprom-2024-04-15.bin

[optional]
cd

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#BOOT_ORDER
https://github.com/raspberrypi/rpi-eeprom/tree/master/firmware

./update-pieeprom.sh​
cd ../​
sudo ./rpiboot -d recovery

If UART is connected, you will see the firmware status. If the HDMI port is connected, the
screen will turn green.

on UART (you should use BOOT_UART=1 in boot.conf):

Check the bootloader version:

vcgencmd bootloader_version

Also, on the UART when booting:

If the screen is red and in the UART during flashing:

Bad signature pieeprom.bin​
FATAL error-code 24

You are probably using the wrong pieeprom.original.bin image. The right one should be 512k
in size.
pieeprom.original.bin
In my case, the problem was due to an incorrect link:
https://github.com/raspberrypi/rpi-eeprom/blob/master/firmware/stable/pieeprom-2022-09-02.
bin

The correct one:
https://github.com/raspberrypi/rpi-eeprom/raw/master/firmware/stable/pieeprom-2022-09-02.
bin

https://github.com/raspberrypi/rpi-eeprom/blob/master/firmware/stable/pieeprom-2022-09-02.bin
https://github.com/raspberrypi/rpi-eeprom/blob/master/firmware/stable/pieeprom-2022-09-02.bin
https://github.com/raspberrypi/rpi-eeprom/raw/master/firmware/stable/pieeprom-2022-09-02.bin
https://github.com/raspberrypi/rpi-eeprom/raw/master/firmware/stable/pieeprom-2022-09-02.bin

Flashing OS to eMMC / accessing eMMC

In short, it's like this:

●​ Slide the USB switch to USB-C
Press Boot (nRPIBOOT) on the Blade and connect it to your Linux/Mac with USB-C

cable

●​ On a computer with Linux to which you will connect the Blade

sudo apt install libusb-1.0-0-dev​
git clone --depth=1 https://github.com/raspberrypi/usbboot​
cd usbboot​
make​
cd recovery​
sudo ./rpiboot

If you have a Mac OS you need Homebrew

brew install pkgconfig libusb

●​ After that you will be able to mount the Boot partition if present. (it usually happens
automatically). Note a stock CM4 has a completely empty eMMC.
You can fix your files/configs or install the OS using the Raspberry Pi Imager

For complete instructions, see Jeff Geerling's website: instructions

Notes

Tests

Get CPU temp:

vcgencmd measure_temp

Get throttling state:

vcgencmd get_throttled

Display the CPU temperature with an update once per second:

https://brew.sh/
https://www.raspberrypi.com/software/
https://www.jeffgeerling.com/blog/2020/how-flash-raspberry-pi-os-compute-module-4-emmc-usbboot

watch -n 1 vcgencmd measure_temp

Display throttling state with an update once per second:

watch -n 1 vcgencmd get_throttled

Display CPU frequency with an update once per second:

watch -n 1 vcgencmd measure_clock arm

Stress test 1:

sudo apt install stress-ng mesa-utils -y​
stress-ng --cpu 0 --cpu-method fft

Stress test 2:

sudo apt-get install sysbench​
sysbench --test=cpu --cpu-max-prime=20000 run​
sysbench --test=cpu --num-threads=8 --cpu-max-prime=20000 run

best OC so far:
over_voltage=9
arm_freq=2350

watch -n 1 "vcgencmd measure_clock arm && echo && vcgencmd measure_temp &&
echo && vcgencmd measure_volts && echo && vcgencmd get_throttled && echo &&
free -h && echo && vcgencmd pmic_read_adc"

Fan Unit current version

The Smart Fan Unit is a Raspberry Rp2040 based device, it can control the fan itself using
two temperature sensors on board (airflow temperature). And it communicates with both
blades via UART. It also has a button, two digital LEDs, two regular LEDs (to show which
blade is connected or both).

The version without Smart is connected to the left blade in a pair with 4 pins, can measure
speed and control the fan.

The non-smart version is currently powered only by the left blade. The version I sent to Jeff
is the newest test version powered by both blades.

What do you need to pay attention

1.
The current iteration of the 3D-printed enclosure has a weakness.
I broke one of the Fan Unit latches by inattention, but in general you just need to not over
bend or put the chassis standing on it on the table.

2.
The second thing to look at is the contact of the Fan Unit assembly.
This may not be the most reliable option, because if the connector or pins are slightly bent,
they will not fit together or may break. But this is the cheapest and easiest to replace option.
Just make sure the first time that they are flat and fit together. You can start with a fanless
assembly to check the case

3.
Processing traces on the edges of the RC2 PCB

Some RC2 blades have irregularities on the borders of the circuit board (the places of
separation of the plates), this will be corrected in version 1, but in the meantime need to
finalize it with knife or any other tool (incidentally on some blades, I have already done it)

4.
If you printed the case yourself, note that the blade should go in without difficulty. The model
should be printed 1in1 with minimal error.
When printing with the Cura slicer, I use a “horizontal expansion” setting of “-0.08”
This is the challenge for the 3D printer. Best of luck!

Known problems
With NetGear switches
GS324TP v1
QS110TPP v1

there is a problem with PoE mode negotiation when using FTP twisted pair. I recommend
using UTP in this case.
But maybe this is just my problem. No one else has been able to reproduce it yet.

Disclaimer
I spent a lot of time looking for good and free or cheap documentation solutions. But I'd
rather do it here (Google Docs) and move it afterward than spend more time looking for a
better solution :)
Moreover, here you can easily give comments or suggestions to help improve the
documentation right at the start of Compute Blade v1.
This is the way.

	
	
	
	docs.computeblade.com
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Main Features
	NVMe Boot
	UART
	USB-A
	Stealth mode
	Edge button
	Digital LEDs
	Square connector at the rear of the Blade
	UART connection (RP2040 Fan Unit)
	PWM fan (non-smart Fan Unit)

	Ethernet with PoE
	PoE determining
	Compute blade headers
	RTC
	
	ZYMKEY 4i

	Compute Blade TPM and Dev
	TPM

	Compute Blade Dev additional features
	MicroSD card slot
	HDMI
	Write Protection, Wireless, and Bluetooth Switch
	USB-C
	Flashing the bootloader
	Flashing OS to eMMC / accessing eMMC

	
	Notes
	Tests
	Fan Unit current version
	What do you need to pay attention
	1.
	2.
	The second thing to look at is the contact of the Fan Unit assembly.
	This may not be the most reliable option, because if the connector or pins are slightly bent, they will not fit together or may break. But this is the cheapest and easiest to replace option.
	Just make sure the first time that they are flat and fit together. You can start with a fanless assembly to check the case
	3.
	4.

	Known problems
	Disclaimer

