
Orcasound
Proposal- Google Summer of Code 2020

Personal Details

Name- Mohit Saini
Email- sainimohit23@gmail.com
University- Guru Gobind Singh Indraprastha University, New Delhi, India
Telephone- (+91) 8076677127, (+91) 8377810420
LinkedIn- https://www.linkedin.com/in/sainimohit23/
GitHub- https://github.com/sainimohit23
Medium- https://medium.com/@mohitsaini_54300

About Me:

I am a final year computer science engineering student at Ambedkar Institute of
Advanced Communication Technologies and Research, Delhi. Currently, I am working as a
data science intern with Yatra. My area of interest is deep learning and these days I am
more into recent advancements like BERT, Transformers, ELMO, GPT-2, RASA, etc. that are
happening in the field of NLP. I am consistently working on expanding my skill set so that I
can grow as a developer that can build end-to-end AI solutions.

I have experience of more than two years in developing deep learning models. I have
worked on several personal projects. I also bring experience of working in different roles
at various startups and companies with me.

Last year I also tried to participate in GSoC through ESIP’s project titled- ‘OrcaCNN-
Detecting and Classifying Killer Whales from Acoustic Data’. For that, I built the whole
working project using the ideas that I had learned over time. The project is still available
on my GitHub. So, I have prior experience and a little head start that will suit this project.

Skills- Python, C++, DS, Algorithms, Tensorflow, Keras, Computer Vision, NLP, MySQL, Docker,
Javascript, Flask, REST APIs, HTML & CSS.

https://www.linkedin.com/in/sainimohit23/
https://github.com/sainimohit23
https://medium.com/@mohitsaini_54300


Title: Real-Time Orca Call Detection in No Time

Abstract:
For this project, I am proposing a real-time orca prediction toolkit that can be used by
researchers around the world with or without programming knowledge. The toolkit will
have the following features-

● The toolkit will provide a standard model trained by the organization that users
can use to detect the orca sounds in real-time. This model will be deployed using
Flask API and Docker on any cloud service so that the users can access it remotely.

● The source code of the toolkit will provide the functionality to finetune the existing
model or train a new model from scratch.

● A data processing pipeline to preprocess the audio data for the training of the
model.

● The source code of toolkit will also provide a Dockerfile and related scripts for the
users who want to create their own containers.

● Users will be able to upload their audio files from their local machines on the
server to get the predictions.

● Well written tutorials for every use case scenario. Alternate Jupyter notebook for
some Python scripts.

So, according to the above points, we can divide the toolkit into two broad categories.
One is the source code related to the training and deployment of the model, and other is
model hosted on cloud and it’s interface.



I will try to build a CLI based interface for the toolkit that requires no prior programming
knowledge. I won’t do anything fancy to increase the complexity of the project. Models will
be lightweight and users will be able to run them on their local system.

Schematic diagram of the model training pipeline(for users)

Technical Details:
In this section, I will go through the technical aspects of the various parts of the toolkit.

Real-Time Orca Detection from Model Running on Docker

First, let’s talk about Docker. With the source code of the toolkit, I will provide a Dockerfile
to create a container that will host a web-based API of our model. This Dockerfile will have
the code to set up the correct Linux environment with the required packages. The RESTFul
Flask server running on this Docker will host the orca detection model. Containerizing the
code will help us in saving the resources and managing the code dependencies.

The API running on the cloud service will take an audio file as an input and it will return
the start times and end times of orca sounds in the audio.

If a single instance of the Docker container is unable to handle the user requests, then we
need to scale up by creating multiple instances of the Docker container, and to manage
all this Kubernetes will be used.



Now let’s take a look at how I will achieve real-time detection of Orca Calls.

The limitation of deep learning models that I will be using is that they only work on audio
data with a fixed shape or length. But, the input audio is going to be of variable length. So,
to tackle this problem, the code will break down the input audio into smaller fixed-length
chunks at regular intervals. If the length of the input audio is smaller than the chunk size,
then the program will pad it with silence. If the length of audio is larger than the chunk
size then the program will trim the audio in smaller sized chunks.

Just breaking the audio at regular intervals of time is not a good idea because we might
encounter a case where orca sounds will get divided into two separate chunks and our
model will miss it. To avoid this we will create a moving window of 10 seconds and it will be
updated every fixed small interval of time(let’s say 0.5 seconds). Meaning for every 0.5
second, the oldest 0.5 second chunk of audio will be discarded and the fresh 0.5 second
audio will be shifted in.

We will feed these chunks one by one to our orca detection model to get the outputs. Now,
another problem arises. The forward chunks created by the sliding window will overlap
with previous chunks, thus their outputs will also overlap. So, the final output will be
generated by stitching up the predictions of individual chunks. Here is an Ipython
notebook for reference-
https://github.com/sainimohit23/OrcaCNN-Demo/blob/master/4%20Model%20Pipeline/F
ullModel.ipynb.

The same approach can be used in live audio streaming of orca sounds. But, there is
another problem with the live audio streaming. Prediction models take some time to
generate the output. So, by just dividing the audio stream into chunks will create gaps in
the detection process.

Pyaudio library has the ability to read audio streams asynchronously. This will help us to
record the audio in one thread and when a new fixed length of audio data is available, it
will notify our model to process it in the main thread.

https://github.com/sainimohit23/OrcaCNN-Demo/blob/master/4%20Model%20Pipeline/FullModel.ipynb
https://github.com/sainimohit23/OrcaCNN-Demo/blob/master/4%20Model%20Pipeline/FullModel.ipynb


Orca Detection Model

Depending on whether we are concerned with the orca pod classification, models can be
divided into two broad categories-

1. If we want to detect the presence of orca in audio, then we can use a binary
classification model that detects the presence and absence of orca sounds.

2. Along with the presence of orca, if we also want to classify the orca pod then we
can use a model with a slightly different architecture.

Based on the requirement of the temporal start and end time of the orca calls, we can
further categorize our models.

Now, I will explain the approaches for the orca detection models. One thing I want to make
clear is that these deep learning models work on static data. So, the detection in real-time
with audio streaming is handled separately.

1. Binary Classification models
If we just want to detect the presence of orca then we can opt for the following
approaches.



a. CNN Model- The Mel-spectrogram of orca sounds are visually very distinctive. We
can use this property of orca sounds to train a Convolutional Neural Network for the task
of binary classification of orca sounds. This method is very effective if we just want to
detect the orca sounds. Precise starting and ending time of orca sounds can’t be
estimated using this method.

Spectrograms of orca sounds
A simple lightweight CNN model with a sigmoid output layer would be enough for this
task. The input of the model will be a spectrogram on fixed-length audio and the output
will be a number between 0 and 1, showing the probability of an orca call.

b. RCNN Based Model- If the precise time of orca sounds is also required then we
can use this technique. I used this model for my last year’s GSoC proposal. In this, we will
train our model for the problem of Wake Word Detection. The models trained on this
problem statement are used to detect the trigger words.

At an abstract level, the model takes a Mel-spectrogram of fixed length audio as an input
and it returns a stream of numbers between 0-1 as output. Each number of the output
stream represents a certain timestamp. If we get a continuous stream of ones counting
higher than a certain threshold (let’s say 25), then we say that we have detected an Orca.

Model details
Before diving into further details, first, let’s define certain variables that will help me to
explain the mathematics and technical aspects of the model.

● Sampling rate of input audio: 44100 samples/sec.
● Size of input audio: 10 seconds (i.e. 441000 samples).
● Tx = 5511 (samples of input spectrogram).
● Ty = 1375 (size of the array of 0’s and 1’s returned by the RNN model).



Each step of raw audio represents 10/441000 = 0.000023 seconds.
Each step of Tx represents 10/5511 = 0.0018 seconds.
Each step of Ty represents 10/1375 = 0.0072 seconds.

The input audio will be first converted to a spectrogram. The spectrogram will have the
shape: (101, 5511) [parameters: nfft=200, noverlap=120]. This spectrogram will act as an input
for the model. The model will first perform a 1D convolution on the spectrogram. The 1375
dimensional output array of the Conv1D layer will be further processed by the multiple
layers of Gated RecurrentUnit (GRU) cells to get the final Ty=1375 step output. The 1D
convolutional layer plays a role similar to the 2D convolutions of extracting low-level
features and then possibly generating an output of a smaller dimension.
Computationally, the 1D convolution layer also helps speed up the model because now the
GRU has to process only 1375 timesteps rather than 5511 timesteps. The two GRU layers
read the sequence of inputs from left to right, then ultimately use a {dense + sigmoid}
layer to make a prediction for Yt. Because Y is binary-valued (0 or 1), we use a sigmoid
output at the last layer to estimate the chance of the output being 1.

Let’s assume we get a stream of ‘1s’ starting at the position 850 in the output array. Then
the precise time of the ending of the Orca call will be: (10/1375) * 850 = 6.18 second.



The model that I have explained above gives just the ending time of the orca sound. With
slight modifications in the training procedure. The above architecture can be used to get
both the starting and ending times of orca sounds.

Since the input to the model is the spectrogram of fixed length audio. We can further
optimize the performance of the model by using bidirectional GRUs.

2. Models that can detect as well as classify the orca
pods

The two architectures that I have explained above can also be tweaked to classify the orca
sounds into their respective pods. So, let’s discuss both architectures one by one.

a. CNN Model- For CNN classifier it is actually very simple. We just have to change the
output layer from sigmoid to softmax and we have to train the model for the classes:
(number of orca pods) + 1 using the categorical cross-entropy loss function. The extra
class is for other types of sounds.

b. RCNN Model- A modified version of the RCNN model that we discussed earlier is
presented in the paper- Sound Event Detection using Spatial Features and Convolutional
Recurrent Neural Networks. In this model, the inputs will be the same but the output layer
will be a softmax layer. The model will output a stream of 0s and 1s for each class,
signifying the presence of each class in the input audio.

In the paper, it is also described that by employing the same RNN layers on different
channels of the input audio and concatenating their outputs, the model can learn the
inter-channel features.

https://arxiv.org/abs/1706.02291
https://arxiv.org/abs/1706.02291


According to the authors, the model is tested for the following problem statements-
● Sound event detection
● SED with weak labels
● Bird audio detection
● Music emotion recognition

Image is taken from the paper
Depending on the requirements of the organization. I can build the toolkit around any of
the architectures mentioned above.

NOTE: The evaluation of the performance of the models will be done using the SED EVAL
python library that Scott Veirs shared on the GitHub issue page. It provides the
implementation of metrics like Precision, Recall, F-Score, Sensitivity, etc.

https://tut-arg.github.io/sed_eval/tutorial.html


Training Data Preparation

In my opinion data preparation is going to be the most rigorous and time-consuming task
of this project. Although the input formats of data and labels of both the model
architectures are quite different. But there are some common processing steps that are
needed to be done. So, let’s first talk about the steps that are common.

Based on last year’s experience, I am assuming that the data is not going to be structured
or labeled. So, to prepare the training data. First, I will collect positive and negative audio
samples manually. Then I will do the manual trimming of the audio clips so that the clips
just have the orca sound and nothing else. If required, the audio clips will be classified
according to orca pods.

Apart from positive and negative orca samples. 10 second long audio clips of background
audio will be required. Reason? I will tell you in a moment.

After the manual work, now following are the preprocessing steps that are needed to be
performed to make the data consistent-

● Standardizing the frequency of audio.
● Standardizing the number of channels (it will affect the architecture of the model).
● Standardizing the format of audio i.e. .wav, .mp3 etc.

I will use the Pydub or Librosa library to perform the above transformations. Now, let’s see
the model-specific data preparation steps-

CNN Model- We Don’t have much to do in the case of the CNN model. We just have to fix
the size of input audio clips and generate the spectrogram. The length of the audio
should be fixed so that the generated spectrograms are consistent. After all this, we just
need to prepare the labels for each class of the input data.

RCNN Model- The input data of RCNN is going to be a bit different from the CNN model.
To prepare the data of the RCNN model, I will write a python code that will do the following
operations to generate the training samples-

● Randomly pick up a background audio clip of 10 seconds in size.
● Randomly select positive and negative audio samples, and superimpose them on

the background audio clip.
● Generate a label file corresponding to each training audio sample.

The audio data generated by the above steps will be converted to the spectrogram in the
final processing step.

These are the exact preprocessing steps that I used last year-
https://github.com/sainimohit23/OrcaCNN-Demo/tree/master/1%20Input%20Standardizer

https://github.com/sainimohit23/OrcaCNN-Demo/tree/master/1%20Input%20Standardizer


Tech Stack and References

Tech Stack-
● Python
● Keras
● Docker
● Flask

References-
● https://www.coursera.org/learn/nlp-sequence-models
● https://github.com/jaimeps/whale-sound-classification
● https://github.com/axiom-data-science/OrcaCNN
● https://github.com/Tony607/Keras-Trigger-Word/blob/master/tri

gger_word_real_time_demo.ipynb
● https://frontendmasters.com/courses/complete-intro-container

s/
● https://medium.com/@shamir.stav_83310/lets-create-a-cli-with-p

ython-part-1-ae4fe9e0258b (found this through Abhivav’s
proposal)

● https://tut-arg.github.io/sed_eval/sound_event.html
● https://arxiv.org/pdf/1706.02291.pdf

https://www.coursera.org/learn/nlp-sequence-models
https://github.com/jaimeps/whale-sound-classification
https://github.com/axiom-data-science/OrcaCNN
https://github.com/Tony607/Keras-Trigger-Word/blob/master/trigger_word_real_time_demo.ipynb
https://github.com/Tony607/Keras-Trigger-Word/blob/master/trigger_word_real_time_demo.ipynb
https://frontendmasters.com/courses/complete-intro-containers/
https://frontendmasters.com/courses/complete-intro-containers/
https://medium.com/@shamir.stav_83310/lets-create-a-cli-with-python-part-1-ae4fe9e0258b
https://medium.com/@shamir.stav_83310/lets-create-a-cli-with-python-part-1-ae4fe9e0258b
https://tut-arg.github.io/sed_eval/sound_event.html
https://arxiv.org/pdf/1706.02291.pdf


Schedule of Deliverables:

Community
bonding period

May 5 - May 31 - Discussing the project roadmap
with the mentors

- Exploring the possibilities
- Read DSP literature
- Setting up the development

environment

Phase 1 June 1 - June 14 - Setting up the data processing
pipeline

- Preparing data for different
models

- Training different models

June 15 - June 28 - Evaluating the performance of
models

- Finalizing the model for the
project

- Preparing OOPs based modular
code around the selected model
and data processing pipeline

Phase 1
Evaluation

June 29 - 3 July

Phase 2 July 4 - July 18 - Improve on evaluation
- Preparing Flask API
- Code the script to stream the

data on flask API

July 18 - July 26 - Setting up a Docker environment
and Dockerfile

- Deploying model on the cloud
- Writing the documentation and

tutorials

Phase 2
Evaluation

July 27 - July 31

Final Work Period Aug 1 - Aug 24 - Improve on evaluation
- Extensive testing of the toolkit
- Fixing bugs
- Submitting the final code and

documentation.

Final Week Aug 24 - Aug 31 - Submit the final work



Development Experience

Internships:

Yatra Online Pvt. Ltd. | Data Science Intern
Feb 2020 - Present | Gurugram

● Wrote a python script to automatically update the database daily on AWS redshift
using crontab.

● Development of YATRA B2E email chatbot and YATRA FAQ.
● Worked on Flask APIs for models and created their docker containers.

CRIO.DO | Crio Launch Micro experience
Jan 2020 - Mar 2020| Virtual

● Internships like micro-experience by working on real products.
● Worked on the development of Qbox- a secured file-sharing solution for enterprise

networks, Qmoney- a personal stock portfolio analysis and recommendations
platform and Qcharm- a code editor.

Metvy | Machine Learning Intern
Nov 2019 - Jan 2020 | Gurugram

● Worked on the development and improvement of existing recommendation
systems.

● Developed an NLP based job recommender system.
● Time series prediction using RNNs.

The Research Nest | AI Blogger
Nov 2019 - Jan 2020 | Work From Home

● Analyze the latest research and developments in the field of AI and derive useful
insights.

● Wrote well-researched blogs on topics like parking space detection, GPT-2 and
voice cloning. Medium Link- https://medium.com/@mohitsaini_54300

Athancare | Deep Learning Research Intern
Feb 2020 - Present | Gurugram

● Worked on the development of the handwriting OCR pipeline using siamese
convolutional neural networks.

● Implemented research papers on line segmentation. Implemented SigNet paper.

https://medium.com/@mohitsaini_54300


Personal Projects:

Parking Space Detection System- Developed a real-time parking space detection
system pipeline based on NVIDIA’s research blogs using tools like matplotlib, Mask-RCNN,
and Intersection over union. Github Link- https://github.com/sainimohit23/parking.

Real-Time face Recognition using Facenet- Developed a pipeline for the training
of facenet model on triplet loss. The program uses a webcam to recognize faces in
real-time. Github Link-
https://github.com/sainimohit23/FaceNet-Real-Time-face-recognition.

AI Chatbot- Developed a chatbot using seq2seq transformers, flask and react on
papaya dataset for final year minor group project. The chatbot can remember names in
sessions and it can also perform simple calculations and tell jokes and stories.

Orca detection and classification from acoustic data- Curated training data
from raw audio samples. Developed RNN based orca detection model using the concept
of wake word detection. Developed RNN+CNN based orca pod classification model.
Worked on this to secure a slot in GSoC 2019. GitHub Link-
https://github.com/sainimohit23/OrcaCNN-Demo.

Yolov3 on CSGO- Trained YOLOv3 object detection model to recognize Terrorists and
Counter-Terrorists in CSGO gameplay. I prepared the whole training dataset by myself
from scratch. I also made an image labeling tool to prepare the dataset for training.
Github Link- https://github.com/sainimohit23/YOLOv3-Counter-Strike-Global-Offensive.

ECG Image Classification- A CNN classification model for the ECG data. The model
takes the images of spectrograms of the ECG and then classifies it into 4 categories.
Github Link- https://github.com/sainimohit23/ECG-image-classification/tree/master.

Text Summarization- Developed a seq2seq encoder-decoder model for the task for
text summarization. Github Link- https://github.com/sainimohit23/Text-Summarization.

Image Captioning- Built a hybrid model for image caption generation using VGG-16
and RNN layers. Github Link- https://github.com/sainimohit23/Image-Captioning.

https://github.com/sainimohit23/parking
https://github.com/sainimohit23/FaceNet-Real-Time-face-recognition
https://github.com/sainimohit23/OrcaCNN-Demo
https://github.com/sainimohit23/YOLOv3-Counter-Strike-Global-Offensive
https://github.com/sainimohit23/ECG-image-classification/tree/master
https://github.com/sainimohit23/Text-Summarization
https://github.com/sainimohit23/Image-Captioning


Other

Other Experiences:

● Google Code-In Mentor for Tensorflow organization (Nov 2019 - Feb 2020)- I was
selected by the Tensorflow organization to mentor the pre-university students in
the google code-in program. I helped around 15 students during the program.

● Completed Hacktoberfest 2019.
● Runner up in Coding Blocks DS-Algo hackathon.
● Contributed to CLTK.

Certifications and Courses:

● Algorithms Design and Analysis (Stanford Lagunita)
● Data Structures and Algorithms in C++ (Coding Blocks, Delhi)
● Stanford Machine Learning (Coursera)
● Deep Learning Specialization (Coursera)
● Tensorflow Specialization (Coursera)
● Building Recommender Systems using ML & AI (Udemy)
● Web Developer Bootcamp (Udemy)
● Flask Tutorial (Miguel Grinberg)
● Complete Introduction to Containers (FrontendMasters)

Personal goals for the upcoming weeks:

● I feel that my OS and Networking Concepts are a little weak. So, I will be reading
these two books-

○ Computer Networking: A top-down approach.
○ Operating System Concepts

Activities/Hobbies:

● I have been part of my college and school basketball teams.
● Sometimes I like solving problems on coding platforms. I try to participate in

leetcode weekly challenges.
● I like to play competitive games like CSGO and Rainbow Six Siege a lot.
● Up until January, I was regular in the gym for about 2 years.



Why this project?

As I have mentioned earlier, my connection with the task of orca detection goes back to
last year’s GSoC. Since I have a huge interest in the field of AI, therefore I have been doing
internships and working on my personal projects in this field for the past two years. In the
industry, most of the time I am working on generic tasks like chatbot development,
recommendation systems, image classification, etc. and there’s isn’t much to explore in
terms of the applications of AI. This is the prime reason I am interested in this project. The
whole idea of applying machine learning to detect orcas is really fascinating for me and it
would be an honor to work for the research community.


