

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

This lesson introduces the Caesar Cipher,
one of the earliest and simplest examples of
a substitution cipher in the field of
cryptography. The Caesar Cipher app will
encrypt and decrypt secret messages by
shifting the letters in the alphabet by a certain
shift number..

Objectives:
In this lesson you will :

●​ learn basic concepts about
cryptography and the Caesar cipher,

●​ build an app that implements Caesar
cipher encryption and decryption,

●​ learn how to use local variables (as
opposed to global variables) in an
app,

●​ learn how to use a function (a
procedure that produces a value) in
an app.

Short Handout

Overview

In this lesson we will build an app that performs Caesar-cipher encryption and decryption of
messages. Before jumping into the app itself, we begin with a brief introduction to cryptography
and to the Caesar cipher algorithm.

http://course.mobilecsp.org
https://docs.google.com/document/d/13D-9zFjJ_NqeU3N4hVpp2SEMrWRGi_YcvtH9xAWf3GY/edit?usp=sharing

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

Cryptography

Cryptography means secret writing. It is the art and science of sending secret messages and it
has been used by generals and governments and everyday people practically since the
invention of written language. Modern cryptographic techniques are essential to guaranteeing
the security of our transactions on the Internet.

Cryptography plays a role whenever you make an online purchase at Amazon or provide your
password to Google. Whenever you see the https protocol in your browser, you can rest
assured that your communications are secure because they are being encrypted with strong,
unbreakable encryption. If we couldn't rely on those transactions being secure we really
wouldn't have the Internet as we know it today.

Video: The Caesar Cipher

In the next lessons, we will look at several different versions of cryptography, including the
strong encryption that protects our Internet transactions. But let’s begin here with a simple
cipher, the Caesar cipher, so named because it was used by Julius Caesar in the 1st century
B.C. The following video will explain the basics of the Caesar cipher. Click on the picture or
link to watch this presentation on Caesar Cipher.

(Click the image to start the video.)

http://course.mobilecsp.org
https://www.youtube.com/watch?v=7Tfw_-QRiAs
https://www.youtube.com/watch?v=7Tfw_-QRiAs

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

Some Exercises

Before proceeding, try the following set of exercises to make sure you understand how Caesar
cipher works. For the first two exercises, use the following Caesar alphabet, which has a key (a
shift) of 3. Try to do these exercises by hand.

PLAIN_ALPHABET: abcdefghijklmnopqrstuvwxyz
CIPHER_ALPHABET: DEFGHIJKLMNOPQRSTUVWXYZABC

1.​ By Hand: Use the Caesar cipher shift of 3 to encrypt your name. Then use the Caesar

Cipher Widget to check your answer.
2.​ Encrypt a short message for your partner using the cipher_alphabet with shift 3 above.

Trade the encrypted messages and decrypt them.
3.​ Create the CIPHER_ALPHABET that would result from a Caesar shift of 5.
4.​ Do the self-check exercises after this section online.

Functions and Local Variables

This lesson introduces two new programming concepts, local variables and functions. A local
variable (in contrast to a global variable) is one that has a limited scope, which means that it
only exists and can only be used within a block of code, for example in a procedure or a
function. A global variable can be used anywhere within the program -- or, at least in App
Inventor, anywhere within the blocks workspace associated with Screen1. A good place to use
local variables is in procedure and function definitions.

A function is a procedure that returns a value. A simple example would be the sqrt() function --
when you call sqrt(25) it will return the value 5, which can then be used in other expressions.
For example, 5 + sqrt(36) is 11. You can’t do this with procedures that don’t return a value.

The Caesar Cipher App: Getting Started

To get started click on this link to open App Inventor and import the CaesarCipherTemplate.
Use the Save As button to rename your project “CaesarCipher”.

The User Interface

The app’s User Interface is already designed for you. This walkthrough will go over the app’s

http://course.mobilecsp.org
https://mobile-csp.org/webapps/crypto/caesar.html
https://mobile-csp.org/webapps/crypto/caesar.html
http://ai2.appinventor.mit.edu/?repo=templates.appinventor.mit.edu/trincoll/csp/gcb/CaesarCipher/CaesarCipherTemplate.asc

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

main elements.

The UI for our app consists of the following components:
two TextBoxes are used for inputting the plaintext
message (‘Plaintext’) or the ciphertext message
(QMBJOUFYU) respectively. A third TextBox is used to
input the shift (2).

Two Buttons are used for encrypting and decrypting.
When the ‘Encrypt’ button is clicked, the message in the
plaintext TextBox (‘Plaintext’) is encrypted using the shift
(2 in this case) and the result is displayed in the the
ciphertext TextBox (‘QMBJOUFYU’). When the
‘Decrypt’ button is clicked, the message in the ciphertext
TextBox should be decrypted using the shift (2) and the
result displayed in the plaintext Textbox.

Finally, there are two Labels. One (‘Shift:’) is used as a
prompt to show the user what to type into the shift
Textbox. The other (‘Text for Label’) is used to help us
debug the app as we are developing it. It will be hidden
from the user once we have finished the app.

In addition,

●​ The Screen’s orientation property has been set to ‘Portrait’.
●​ The TextBoxShift.NumbersOnly property has been set to true, which means that only

numbers can be input into that element.

Coding the App

The template for this app already has a lot of the code built for you. The following screenshot
shows the entire template workspace.

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

Variables

There are just two global variables necessary for this app, the PLAIN_ALPHABET and the
cipher_alphabet. Following our coding convention, the PLAIN_ALPHABET’s is all
UPPERCASE​ because it is a constant -- its value will never change. The cipher-alphabet will
change based on the shift, so its name is in lowercase.

Events and Event Handlers

There are just two events that must be handled by this app: the ‘Encrypt’ and ‘Decrypt’ Click
events. Let’s look at the code for the ButtonEncrypt.Click handler:

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

When ButtonEncrypt is clicked, it calls the caesarEncrypt function, which encrypts the string
that the user input into the TextBoxPlaintext component and displays the result in the
TextBoxCiphertext component. This will cause the function’s result, or value, to be displayed in
the user interface. Notice how the plaintext and the shift are taken directly from their respective
TextBoxes, By using a function (rather than a procedure) this operation can all be done with
one statement.

The caesarEncrypt Function

Rather than coding all of the encryption details in the event handler, we are using the
caesarEncrypt function to perform the encryption for us. Here is a stub version of the function
definition. You will code the implementation.

The function takes two parameters, the plaintext message that we want to encrypt and the
shift to use in setting up the cipher alphabet. As a result the function will return the encrypted
message. Note the use of the three local variables: The chr variable will store individual
characters that are pulled from the plaintext message. The index variable will store the chr’s
index in the PLAIN_ALPHABET and the ciphertext variable will store the encrypted message
that will be returned as a result.

Why Local Variables. As local variables, these three variables have limited scope,
which means they can only be used within the in slot -- they cannot be used elsewhere
in the workspace. One advantage of local variables is that they reduce the number of
global variables that you have to manage in a program. Another advantage is that they
make it easier to understand the variable’s role because it is limited to just that local

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

scope. Local variables often make debugging easier too because if there is a problem
with their values, you only need to check the block of code where they are set up, unlike
global variables that can be changed anywhere in the program.

Code Walkthrough: The initCipherAlphabet Procedure

As noted above, as a substitution cipher, the Caesar cipher uses a cipher alphabet to perform
the encryption. We will use the initCipherAlphabet procedure to construct the cipher alphabet:

The “\n” is a special character to put in a newline so that each alphabet is on separate lines.
Recall that the PLAIN_ALPHABET stores the 26 letters ‘a’ through ‘z’ and to construct the
cipher_alphabet we want to shift those letters by the shift amount, wrapping some letters around
to the right-hand-side of the alphabet. Consider the plaintext alphabet written out with index
numbers above it:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (indexes)
a b c d e f g h i j k l m n o p q r s t u v w x y z (plaintext)

If our shift is 3, then we would shift every letter three spaces to the left and let the first three
letters wrap around to the right-hand-side:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (indexes)
d e f g h i j k l m n o p q r s t u v w x y z a b c (plaintext)

We could use a loop to perform this shift operation. But there is an easier way to do this.
Notice that we get the same result if we concatenate the last 23 letters of the alphabet and the

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

first 3 letters:

d e f g h i j k l m n o p q r s t u v w x y z + a b c

So, to construct the cipher_alphabet we want to grab 23 (26 - shift) letters from the
PLAIN_ALPHBET, starting at index 4 (shift + 1), and join them to all the letters starting at 1 and
going up to index 3. That is, we join DEFGHIJKLMNOPQRSTUVWXYZ and ABC. This will
give us this pair of alphabets:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (indexes)
a b c d e f g h i j k l m n o p q r s t u v w x y z (plaintext)
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C (ciphertext)

To perform this operation in App Inventor we will use the built-in segment function from the Text
drawer. As its name suggests, the segment function grabs a certain segment (or substring)
from a piece of text.

The first segment block grabs last 23 letters (26 - shift) from the PLAIN_ALPHABET. Those are
the letters defghijklmnopqrstuvwxyz. The second segment block grabs the first 3 (shift) letters
from the PLAIN_ALPHABET -- i.e., the letters abc. When you join them together you get the
cipher alphabet shown above:

defghijklmnopqrstuvwxyzabc

Code Walkthrough: The Encryption Algorithm

The encryption algorithm needs to loop through the letters of the plaintext message replacing
each plaintext letter with the corresponding ciphertext letter. However, if we did that, we would

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

be changing the plaintext message itself. So, instead, we will loop through the plaintext
message and construct a new message, the ciphertext message, by replacing each plaintext
letter with the corresponding ciphertext letter. In pseudocode we get the following algorithm:

initCipherAlphabet(shift)

ciphertext ← “”
FOR EACH letter IN the plaintext
 Find corresponding letter in ciphertext alphabet
 Concatenate corresponding letter to ciphertext
RETURN ciphertext

Let’s trace through this algorithm with a simple example. Suppose our plaintext message is
hello and our shift is 3. When we call initCipherAlphabet we get the following pair of alphabets:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (indexes)
a b c d e f g h i j k l m n o p q r s t u v w x y z (PLAIN_ALPHABET)
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C (cipher_alphabet)

Our ciphertext starts out as “”. Then we loop through the letters in the word hello. For the first
letter, ‘h’, we concatenate its corresponding cipher_alphabet letter, ‘K’, to the ciphertext. This
gives “K”. For the second plaintext letter, ‘e’, we would concatenate ‘H’ from the
cipher_alphabet and so on. The following table shows how the ciphertext message will grow
from “” (the empty string) to “KHOOR” as the loop progresses:

Iteration Plaintext letter (chr) Cipher_alphabet letter Ciphertext result

0

1 h K K

2 e H KH

3 l O KHO

4 l O KHOO

5 o R KHOOR

After 5 iterations of the loop the loop will stop and the algorithm will return ‘KHOOR’ as the
encryption of ‘hello’.

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

Coding CaesarEncrypt

Your task is to implement this algorithm in App Inventor as the caesarEncrypt function. You are
given the following stub version of caesarEncrypt
in the template. Notice it has 3 local variables.
The ciphertext variable will store the encrypted
message, which will be built letter by letter. It is
initialized to the empty string. The chr variable
will store the plaintext letter that we need to
replace with its cipher_alphabet substitute. And
the index variable will store the index of chr in
the PLAIN_ALPHABET.

Notice that the “initialize local in” block has is looking for a block with a stub. First, put in a do
block from the Controls drawer so that we can return a result for the function and have a gap
where we can put in other blocks.

Inside the do block, you will first need to call the procedure:

initCipherAlphabet with the shift parameter given to the caesarEncrypt function.

Then, you will need a loop to encrypt the plaintext. One problem is
that App Inventor does not have a block that is equivalent to
for-each-letter-in the plaintext message. So how will you code
that? One way is to use the counting loop for-each-number
block. (In this case I’ve replaced number with k. The k in this case
will be the index of the letter in the plaintext message. So for our
example hello message, the letter at index 1(k=1) is ‘h’. The

letter at index 2 (k=2) is ‘e’ and so on.

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

Using this block you would loop from 1 to the length of the plaintext message by 1. Then inside
the loop, you would use the segment block to get the kth letter of the plaintext message and
assign it to the local chr variable:

Once you have the ith letter, you need to find where it is -- i.e., its index -- in the
PLAIN_ALPHABET. For this task we can use the starts-at block from the Text drawer. This
block gives us the index at which a certain piece of text (a substring) starts at in another piece
of text. If the substring is not in the larger string, then it will return 0. We can use the block to
set the local index variable:

Now that we know the index of the plaintext letter in the PLAIN_ALPHABET, we can use that
index to get the corresponding letter from the cipher_alphabet using the segment block again:

That’s the letter that we’ll want to concatenate to the ciphertext variable using a join block.

However, what would happen if the plaintext letter does not occur in the PLAIN_ALPHABET?
That would be the case for spaces, numbers, uppercase letters, punctuation and so on. The
starts-at block will return 0 if the plaintext letter is not found in the PLAIN_ALPHABET. In that
case, we should just concatenate the plaintext letter itself to the ciphertext message. In other
words:
 if the index is 0, we join the plaintext letter to ciphertext, but otherwise.we join the
corresponding letter from the cipher_alphabet.

Taken together, this leads to the following more detailed pseudocode description of the
caesarEncrypt function:
PROCEDURE caesarEncrypt(plaintext, shift)
{
 chr ← “”

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

 index ← 1
 ciphertext ← “”
 initCipherAlphabet(shift)
 FOR EACH k FROM 1 TO length(plaintext)
 {
 chr ← segment(plaintext, k, 1)
 index ← starts-at(PLAIN_ALPHABET, chr)
 IF (index = 0)
 ciphertext ← join (ciphertext, chr)
 ELSE
 ciphertext ← join(ciphertext,segment(cipher_alphabet,index,1))
 }
 RETURN ciphertext
}

Here is the whole code for encrypt:

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

TO DO

Your task is to code the caesarEncrypt function and get the app working using Caesar cipher.
Here’s a summary of what you need to do:

 Abstraction: Function Algorithms
caesarEncrypt Follow this pseudocode inside the local variables and a do-result block to go

through each letter in the plaintext and find the shifted letter in the cipher_alphabet
and join it on to the ciphertext which it returns.

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

FOR EACH k FROM 1 TO length of plaintext
{
 chr ← segment plaintext starting at k for length 1
 index ← starts-at(plaintext, chr)
 IF (index = 0)
 ciphertext ← join (ciphertext, chr)
 ELSE
 ciphertext ← join(ciphertext,
 segment(cipher_alphabet,index,1))
}
RETURN ciphertext

Testing the App

Make sure you test the app thoroughly to make sure the encrypt function is working correctly for
various values of the shift. You’ll need to figure out the correct encryption by hand or using the
widget in order to tell if your implementation is correct.

 Inputs Expected Outputs Actual Outputs
Type “hello world” into the
plaintext box. Set the shift to 3
and click the “Encrypt” button.

The resulting output in the ciphertext
box should be “KHOOR ZRUOG”.

?

Enhancements and Extensions

1.​ Decryption. Implement the caesarDecrypt function and the handler for the Decrypt
button to enable the app to perform decryption. Decryption is the mirror image of
encryption. Whereas for encryption, you replace every character in the plaintext with
the corresponding letter from the CIPHER_ALPHABET, for decryption you go through
the ciphertext and replace every character with the corresponding letter from the
PLAIN_ALPHABET. When you are testing this app, only type in lowercase letters in the
plaintext textbox to encrypt, and only type in uppercase letters in the Ciphertext textbox
to decrypt.

2.​ Extend the Alphabet. As it is currently implemented, the plaintext alphabet consists

only of lowercase letters 'a' through 'z'. This means that digits (0 through 9) and
uppercase letters ('A' through 'Z') are not encrypted. That's a security flaw that makes it
easier for Eve, the eavesdropper, to break the cipher and discover the secret message.

http://course.mobilecsp.org

Mobile CSP | Student Lesson

Unit 6 | Caesar Cipher Tutorial

Course Listing: http://course.mobilecsp.org

To fix this, extend the plaintext alphabet to include digits and UPPERCASE letters. If you
use the appropriate amount of abstraction, this should be a simple change to implement!

3.​ Challenging (Optional). Preserving the blank spaces between words makes it easier for

Eve the eavesdropper to crack the encrypted message. To make this more difficult, write
a function that will take a sentence and output the letters in blocks of length 4 with all
punctuation (i.e., all characters not in the PLAINTEXT alphabet) removed. For example,
the function would take 'this, is a test message!!' return 'this isat estm essa ge'.

Summary

The following compares App Inventor procedures and functions (procedures with return values)
to AP pseudocode and blocks.
 AI Blocks AP Pseudocode AP Pseudoblocks

Vocabulary Review

●​ Function
●​ Return Value
●​ Local Variables
●​ Encryption
●​ Decryption
●​ Cryptography
●​ Cipher

http://course.mobilecsp.org

	Objectives:
	Overview
	
	
	
	
	Cryptography
	Video: The Caesar Cipher
	Some Exercises
	Functions and Local Variables
	The Caesar Cipher App: Getting Started
	The User Interface
	Coding the App
	Variables
	Events and Event Handlers
	The caesarEncrypt Function
	Code Walkthrough: The initCipherAlphabet Procedure
	Code Walkthrough: The Encryption Algorithm

	Coding CaesarEncrypt
	TO DO
	Testing the App
	Enhancements and Extensions
	Summary

