
Interact And Possession System

Hello and welcome! Here you can read about the Interact And Possession System and
learn more about it. Whether you just bought it or are still unsure if it’s worth the purchase, you
will find this to be a useful read. The Actor Possession System is a component that can be
dropped into virtually any pawn actor, and with a few naming conventions followed allows you to
let other actors possess this actor by interacting with various components in it, and then to exit it
also using various components in it. Also included is an interface for interacting with other
actors, and some demonstration code showing how this can be plugged into an actor so they
can interact with things they are looking at. There is also a Look At Info system included that
can be used to provide an actor with various information about what it is looking at, in case you
want some better feedback in your UI. This system is also replicated to allow for use in
multiplayer games should you require it. In order to best utilize some parts of this like the Look
At Info system you will need to have some basic familiarity with blueprints to hook it into your UI.
Read on to see examples on how to use these systems and what will actually be involved in
making them work.

Among other things, this pack will also provide you with…

●​ A Camera Controller that allows a player to look around using a camera on any actor.
●​ An Actor Component and Blueprint Interface for sending interaction and look at info

notifications between actors.
●​ A Possession component that can handle letting an actor be entered or exited (such as

getting into a tank or helicopter or porta potty).
●​ A Look At Info system that lets you set up various types of information to be given to

other actors on request, such as telling them what type of interaction they will be making
should they interact with a given object/surface/component.

●​ A series of demonstration actors set up to help you understand and learn how to make
proper use of these provided components and blueprint interface.

Additional Tutorials and Demo vids for other Packages can be found here:
https://www.youtube.com/playlist?list=PLAgvMMfMQH2O1-YfsKXSwcFK2bvVg7UrP

For info on Multi Possession System version (allowing multiple players in one vehicle) look

towards the end for its area in the “updates” section.

If you get warnings for invalid input axis events, then you can create then or replace them with
your projects own on the demo character in the project settings, inputs. This project demo

character uses default third person content axis events.

https://www.youtube.com/playlist?list=PLAgvMMfMQH2O1-YfsKXSwcFK2bvVg7UrP

How To Use - Interact System

To be able to interact with anything, you’ll need to set up an actor to make interact and
look at requests first. Start by opening that actor, and then adding the Interact_BP actor
component into it.

Now you’ll need to add a component (or use an already existing one) as a starting point
for any interact traces. I’d recommend creating an arrow and putting it around chest or head
height on your characters in most cases. Then you’ll want to make sure it’s got “Interact_From”
in its name. You can change the keyword used in the Interact_BP components options if you
want.

Now, go into the event graph, and graph and with a reference to the Interact_BP
component, create an Interact Request message, and if needed a Look at Request message
node as well. Plug in a form of input into each one (interact event/button for the interact request
in most cases, and a tick event into the look at request in most cases).

After that you’ll need to give them a direction to make the traces in. In most cases you’ll
use the camera the player will be looking through, but you also might want to use the actors
own rotation so it interacts with what’s in front of it rather than where the player looks. I prefer
the former option of the camera so I can potentially interact with things to my characters side
just by looking at them though. The Interact_BP component will use the forward vector from that
component to figure out the direction to make the trace in.
​ And lastly, you’ll want to plug in the interaction types this actor can make. It’s just an
array of integers that will only interact with other objects that accept one of those integers. So 1
could mean open doors, 2 could mean pick up or carry something heavy, 3 could mean get
inside of something, etc… A normal character might only do 1 and 3, while a character that’s
gotten into an exoskeletal suit might only do 1 and 2 as he’d be too big to fit inside of anything
else now, but strong enough to grab or move heavy objects.

How To Use - Actor Possession System

First, open the blueprint you wish to use the Actor Possession System in, and then add
the Possession_System_BP component into it. Then, go and look at its details panel and set it
up as you want.

​ Here is the default values of the main options. The system will look for any scene
components (meshes, volumes, arrows, stuff that has a location in world space) with the given
keyword in their name and assign them to the given category of components. Interact volumes
are volumes that when interacted with, will allow someone to enter the parent actor. Exit points
are components that mark the location that the player should spawn at when leaving the actor. I
tend to use volumes for the Interact Volumes, and arrows for the Exit Points.
​ It is also worth noting that an interact volume should be linked to an exit point by
following the keywords with “_0X” where x should be a given number. So if you want someone
who enters the left door of an actor to exit with the exit point in that area, you could add _01 to
both of their keywords as a suffix.
​ If you want someone to always leave from the same point first (like the driver's door in a
car) regardless of where they entered from, you can use the same suffix on all the interact
volumes. You can also enable the “Can Exit Other Points If Main Is Blocked” variable and then if
you have other exit points it will start trying those if the initial one is not viable even though they
don’t have a matching suffix.

(Here is an example, showing an actor with two enter volumes and exit points, each prioritizing

the exit point that was placed closest to it.)

​ There are a variety of other options to mess with for how you will spawn when exiting the
actor, but setting up our interact volumes and exit points is the main part to focus on here. With
a component or components that can be interacted with, such as a vehicles door or a box
volume around it, and exit points such as arrows, we are mostly done setting up the
components.
​ Now we need to let this component receive messages from others. At this point there are
two ways to go. The first approach is, if you are only interacting with this component using the
Interact_BP that I made then you can go into the options and enable “Sole Interact Method On
Actor”. This will make the interact system automatically send interact requests directly to the
Possession system if it is used on an actor with a Possession system that has this option
enabled. This will however keep you from getting that interact notification on the main blueprint
and would keep you from using it for other things as well. Still, if the only interaction with this
actor will be to possess it, then simply enabling this option can drastically save time. We’ll also
need to be sure to set the Interaction Type variable if we enable this option though.
​ If we do want to have other forms of interaction or need the actor to know more about
the interact notification for some reason, then we will need to set up the actor to receive the
messages through a Blueprint Interface (and then to forward them on to the Possession system
as is needed).

While not required as you can always use other methods of interacting with the actor to
possess it, we’ll use it for this example as it’s what the Interact_BP uses normally. In your actor
go to Class Settings (shown in the bar at the top of the screen normally) and then look at the
details on the right side after clicking it. Here you’ll see Interfaces, you’ll want to add the Interact
BPI here, and then compile.

Now, look down onto the left side of the screen where variables and functions are

normally located. You’ll now see an area showing Interfaces. Open the Interact_Notification
function from here, and you’ll get a new tab that lets you set up how your blueprint will respond
to interactions.

You’ll want to take the input values and then check them against the possession systems
interact components. If the event interacted with an interact volume, then accept it and tell the
Possession system about the interacting actor. You can also add other checks such as an
interaction type requirement. The idea is you can set up a simple integer to represent a type of
interaction, so you could use 1 to represent opening doors, boxes, etc, 2 could represent picking
up an object, and 3 could be entering an actor. You can use whatever you want, but the idea is
to make sure that the incoming interaction request is made by something that can interact with
the Possession Controller (A large mech exosuit might still be able to open doors, but shouldn't
be able to fit into a car anymore for example).

After figuring out if you can accept the interact request, send a reply with the results. You

can find this all in the demonstration assets for easy reference and copying. You’ll notice near
the end it is deactivating an index of the Look At Info controller on this actor as well. That’s so
that if someone else looks at the actor, they’d not longer get the message telling them they can
enter this actor through an interaction event since it’s already occupied.

Now, if another actor ever sends an interact message to this actor, it will check to see if it
should let them take control of it. Interaction messages can be tied in with a variety of methods,

but I’d recommend using some type of trace plugged into the direction an actors facing or its
camera is facing, and then sending the component it was looking at with the Interact Message
like the Interact_BP component can do.

In order to leave, simply send an exit message to the Possession_System_BP

component. If you have a Look_At_Info_BP component as well, you can also confirm that you
have left the possessed actor and then adjust the look at info active values so it will being
saying that you can enter that actor again (if appropriate). Don't forget to do the update for the
Look_At_Info_BP component on all clients if its a multiplayer game too.

Also, since you can by default only really have one controller in a given actor, if you want

to have “passengers” in a car or vehicle, I would recommend creating separate actors that are
childed into the main car actor that would have interact volumes placed near the side/rear doors
and with a camera set up over the them so a player can enter and exit without directly
controlling the main vehicle as a passenger.

​ Also, if you want to have multiple possible interacts on an actor (like interacting with two
seperate switches, plus an area to enter and possess it), then you’ll want to do a check against
the interacted component for each one of these possible interacts should the previous ones fail
(in other words the false return on the branch in the above picture would like to a similar check
for interacting with another component/etc… and only return false on the return node if all failed
to meet the requirements.

​ It’s worth mentioning that if you also use the Look At Info BP component on this actor
you may want to use the “Auto Disable/Enable Look At Info Elements” option. This array lets
you add integers as you need. And it will automatically disable/enable the Is Active element that
you have added for a Look At Info component on the same actor. So if you want to not tell
people they can enter a box anymore after someone else is already inside, then you can use
this.

How To Use - Look At Info System

In order to use the Look At Info component you’ll want to take the actor you want to use

it on and then add the Look_At_Info_BP component to it. Now you’ll want to go into the
components details.

Like the Possession System this component will find Scene Components in its parent

actor that contain certain keywords and save them into a list. This time you have an array of
keywords though, you’ll also notice you have an array of everything else as well. This is so that
one LooK At Info component can handle all the look at responses on an entire actor. The idea is
that if you make a keyword in the first index of the Interact Volume Keyword array, then any
components with that keyword will be saved with that index value attached to them. And then
when getting a reply from that component, it will use that index value to get the response values
from the response arrays.

So you could have two keywords, for a car the first could be used on all doors or Interact
Volumes that you can enter an actor with, and the second keyword could be used on the trunk.
Then all the response arrays would in their first index be given values relating to entering/driving
the car, while those in the second index of the arrays could reference opening the trunk.

In order to actually use the Look At Info component now, you’ll need to plug it in so other
actors can see its contents easily. Just like with the Possession system you have two ways to go
about this. The first one involves going into your Interact_BP component on your interacting
actor and enabling the “Send Look At Requests Directly To Look At Info Component” option.
This will result in all look at info requests being sent directly to a Look At Info component if its on
an actor. This can be much faster to set up, but if you want to access or modify the requests
being sent in this actor then you’ll want to route the interactions through the actor instead and
leave this option disabled.

If disabled then you’ll need to add the Interact_BPI Blueprint Interface into the actor (if
it’s not already added). Instead of the Interact_Notification function though you’ll want the
Interact_Look_At one. Open that up and then add the following nodes so that you can get the
desired information from the Look At Info component and send it as a reply.

Here you can see the look at node having its arrays opened and finding the appropriate
response to match for the given component that was looked at. If you are only using textures, or
a single string or such in your UI then you don’t have any need to add all of these different
nodes as it won’t matter if you send nothing back on the inputs that won’t be used in your game.
And should the looked at component not be found, then it will simply send back that it did not
accept the look at request.

For the most part this section of code can be directly copied and pasted into all other
Interact Look At functions on other actors that you may be setting up, so you don’t need to worry
about redoing them all a bunch of times anyway though.

Setting up the look at on the characters end that sends the message is mostly like the

method used to send interact messages. A trace, except this one fires continuously on the tick
event and will send the received information to your UI whenever it receives a response.

Here’s my little demo approach just making some text components visible with the

response (it sets the text to invisible down the false path after checking other hits if they also
don't’ return anything).

As of ~3/13/2018 I have also added a UI Widget to the project, that is also hooked up in

the characters blueprint so you can also reference how to create UI Widgets and update values
in them (or at least one of many methods to do so).

Short “how to” on basic UI Widgets can be found here: https://imgur.com/a/7CQso for

those unfamiliar with them.

https://imgur.com/a/7CQso

How To Use - Camera Controller

The camera controller is effectively a component that can be used if you want a player to
be able to control a camera (through a spring arm). This can be attached to an actor and, if it
has the right components and naming, it will allow for the control of the camera/s. For it to work
you should add a spring arm to your actor, and then a camera to that spring arm. The spring
arm should have a number in its name, starting with 0 and going up to the total number of spring
arms in the actor minus 1 (so count in base 0). For example, adding a spring arm named
“SpringArm0” would let the controller move that spring arm around with its default settings.

It is plugged in with a single input event (Add Look At Direction (Camera)), this event
should be plugged into the input axis events needed to look around, such as the mouse y and x
input axis events.

There are other options for controlling the sensitivity as well as the method of rotation
you may want to look at. The multiplier variable will control sensitivity, and the Rotation Is
Relative variable controls if the camera/spring arm will inherit rotation from the actors rotation, or
if disabled ignore the actors rotation and only respond to the players inputs.

In other words 90% of the time just add this to an actor, make sure it’s got a camera and

spring arm like this…

And then plug in the following input event in the actors event graph so it can be told how

to rotate based on your desired type of input axis mappings (set up in project settings, Input).

And bam… done. It is also recommended to make sure “Enable Camera Rotation Lag” is

enabled on the spring arm to help smooth out movements on vehicles. Especially if “Use
Relative Rotation” on the camera controller is set to false.

Interact System Options

Default

Interact from Keyword: A string that must be contained in a components name for it to be
identified as the component to make interact and look at traces from.

Interact Trace Distance: The distance of an interact trace (how far away you can interact with
something, plus half the trace radius value).

Interact Trace Radius: The radius of the trace, this means you don’t have to look exactly at
stuff, but only in its slightly more general area, set it too high and it can become a bit clumsy
though.

Interactable Object Types: This controls the types of objects the interact trace can hit, if you
are using a special collision type for all interact volumes so they don’t interfere with other things,
be sure to add that here.

Interact Trace Debug: Debug option for interact traces.

Look At Trace Debug: Debug option for look at info traces.

*Send Look At Requests Directly To Look At Info Component: If true, then look at info
requests will be sent directly to a Look At Info component on a given actor, rather than sending
them to the looked at actor itself where it can be manually forwarded. By enabling this option
you don't need to set up the nodes on the Interact Look At function, but it will also mean you
can't tie in any extra functionality through these messages on your own if you want to do that.

Possession System Options

Information
Some of these are mostly meant to be referenced, rather than being manually set.

Interactable Components: An array of components that can be interacted with in order to
possess the parent actor.

Entered By Component: The component that the currently possessing actor interacted with
when it entered.

Interacting Actor: The actor that interacted with this actor and has now been destroyed and
had its player controller moved into this components parent actor.

Can Exit Actor: An option that can be set to keep a player from leaving an actor by means of
this system.

Exit Point Components: An array of all found exit points.

Cached Player Pawn Class: The class of actor that the current possessor previously was
controlling, will be spawned when the player leaves this actor.

Possessing Controller: The controller that has possessed this actor through this controller

Is Possessed: Returns true if there is a player controlling this actor though use of this system.
Visible for information/reference purposes only, avoid changing manually when possible (should
be set to true if upon spawning in this actor would already be possessed by a player though).

Allows Entering: Set to true to allow for players to enter this actor, or false to keep them from
entering.

Last Exited From Component: The last exit point that was used

Default

Interact Volume Keyword: All components with this string in their name will be considered
interact volumes that if interacted with can allow one to possess this actor. In addition adding
"_0X" with X being a number no greater than the total number of interact components will allow
you to match an interact component to an exit point by adding the same string to an exit point.
The underscore and zero are required prefixes to the used number.

Exit Point Keyword: All components with this string in their name will be considered an exit
point. Should have “_0X” as a suffix, with X matching the number used on an interact volume in
order to be linked to a specific enter point.

Destroy Old Actor Upon Entering: If true then a controllers previous actor will be destroyed
when they enter this systems parent actor, if false it will no destroy the old actor that is no longer
being possessed but will send it a message "Controller_Moved" so that it can respond to having
its controller moved into the new actor. The actor must have the Interact BPI interface added to
it to make use of this event. This event is called on the server, so set up the other actor to
receive it appropriately.

*Sole Interact Method On Actor: If true then any interact requests made by the Interact_BP to
an actor with this component will instead of being made to the actor itself will be made directly to
this controller. Enable if an actor only can be possessed and nothing else through interactions to
avoid needing to setup the nodes in the Interact_Notification function that would forward an
input to this controller, but only if this is the only type of interactions they should be able to make
as it will no longer be sent to the parent actor itself.

*Interaction Type: If "Sole Interact Method On Actor" is true then this component will use this
value for its interaction type check on incoming interact notifications.

*Auto Disable/Enable Look At Info Elements: You can add the element for a Look At Info
Components Is Active array on the same actor as this component that you want to disable when
this actor gets possessed through this system.

Exiting Rules

Can Exit Other Points If Main Is Blocked: If true then an exit point other than the one with the
same _0X number in its name can be be used to let the player out should the primary one for
that entry point be blocked.

Spawn Collision Handling: How to handle collisions when an actor is being spawned for the
currently owning player controller to swap its control to while "exiting" this actor.

Reset Orientation: If true then when spawning an actor that leaves the possessed object, its
orientation will be even with the world horizon, even if the exit points orientation was not.

Spawn On Surface Enabled: If true then when an actor is spawned to allow for a player to exit
this systems parent actor, it will try to spawn it on a surface beneath the given exit point rather
than right at the exit point.

Spawn On Surface: Z Offset: A vertical offset for how high to spawn the actor after finding a
surface (default third person character for example has its pivot in its center, so it should be
offset 100 units (1 meter) to try and spawn it with its feet at the found surfaces level. Adjust this
value as is needed.

Spawn On Surface: Surface Types: The types of objects that will be traced for when looking
for a surface bellow a spawn point if Spawn On Surface Enabled is set to true.

Spawn On Surface: Trace Distance: The maximum distance below the spawn point that the
spawn on surface trace will look.

Spawn On Surface: Use End Trace Point If No Hit: If the trace does not hit anything, then you
can have the player spawned at the end of the trace by setting this to true, or if false they will
simply spawn on the exit point itself in this situation.

Look At Info Options

Default

Interact Volume Keyword: Keywords for look at components, all components with a keyword
will be added to the interact components map variable, showing wich array from this index it
matched. All replies for that component will give the reply value from that array index as well. (If
it contains the first keyword in this array, it will send back the reply values from the first indexes
in those reply arrays).

Is Active: True if the given index of this component is active and giving replies.

Information

Interactable Components map: This map shows the index value for each component as it
would match to the search keyword array, and reply arrays (auto builds on start).

Response Type: The type of response being given (matched to components containing the
keywords in the keyword array).

Response A: Part A of the string response being given (matched to components containing the
keywords in the keyword array).

Response B: Part B of the string response being given (matched to components containing the
keywords in the keyword array).

Response Material: An array of materials that can be replied with for a given look at request
matching a given keyword.

Response Texture: An array of textures that can be replied with for a given look at request
matching a given keyword.

Camera Controller Options

Camera/Rotation Controls

Camera Multiplier: Controls how fast the camera looks around.

Spring Arm #: Sets which spring arm in the scene to use as is determined by the number in its
name (0 means use springarm0 for example). Spring arms names must use numbers starting
with 0 and only going up to the number of spring arms in the actor minus 1 (so base 0).

Cached Camera Rotation: Holds the Current rotation of the camera/spring arm (relative).

Default

Controller Active: Sets the controller to be active or inactive.

Use Relative Rotation: If true then rotations are handles relative to the owning actors own
rotations (actor turns, camera turns with it), if false then it uses world rotation and the camera
will only rotate based on inputs and no its actors own rotations.

Contact And Things to Keep In Mind

First, always be creative. This package can be used for a lot more than just entering or

exiting vehicles. You can use it to hide inside of porta potties, boxes, take control of cranes,
defensive emplacements, or a number of other things. It might save you more time than you
might originally have planned to use it for if you keep this in mind. Always be creative, for this
and everything else you may have at your disposal, your imagination is the limit.

Also do keep in mind what other marketplace products you might want to use this with.

Not all marketplace products work together after all, if you plan to use this in certain game mode
types of projects such as the Survival Kit, you may find you’ll need to tweak those systems to
support the players actor being changed from the default type included in these kits themselves.
What this may entail may differ heavily based on the particulars of the other system, so if you’re
uncertain be sure to ask the makers of your other package if it can support the players controller
possessing different actors during runtime.

If you ever have any issues, bugs, questions about how something works, or even
possibly requests for additional features then feel free to contact me at
Pineconedemon@gmail.com and I will try to get back to you as quickly as I can. You can also
find more of my stuff on the marketplace through my username, Sean Dachtler. I also have
some tutorials on my Youtube (Terricon4) for some of my products. And I am for the record
always interested in seeing what people might be making with my stuff, so feel free to toss me
an email showing whatever cool things you’ve been doing with it.

I now have a discord channel here as well where you can chat with others or ask
questions. https://discord.gg/d7paEng

mailto:Pineconedemon@gmail.com
https://discord.gg/d7paEng

Limits of Possession System

The possession system can allow for one to fairly easily and quickly swap from one
pawn to another, with whatever pawns you happen to have. However… Just because it can
swap your control between any pawns, doesn’t mean all of your own pawns, or existing
controllers, will support having other pawns/controllers being used. If you make your own pawns
from scratch or from third person characters or such, you’ll probably have zero problems. But if
using something from an existing and more complex setup… problems may arise.​
​ For example, two popular products on the Unreal Marketplace are the Survival Game
Kit, and the Horror Engine. For the Survival Game Kit, they have a custom class of pawn for the
characters, and it must work with a specific player controller. If you don’t have the controller, the
pawn and many aspects of it wont work, nor the game mode. If you have the controller and
game mode, but swap out/remove their specific pawn… the controller and game mode will stop
working. That is a system which was pre made to do one specific type of game mode (as of my
last experience with it). So if you want to have vehicles… or a different pawn not a child fo its
own class, too bad. The controller will start throwing constant errors, the game mode will break
a bit and try to respawn you thinking you died/were destroyed in a new pawn, and it may take a
LONG time to modify that large complex system to work with different pawns in play. The
Possession System could be used on the character to let you possess a vehicle with their
pawn… but the controller and game mode themselves would have errors and not work without
the original pawn bein both still in play, and the active player pawn. My one attempt to make this
work for someone took multiple hours and incited many a curse words.

For the Horror Engine, you have a case of a custom camera and HUD that reference
that original pawn, destroy it/replace it… and those will start having errors. Lots of them
constantly. In this case you can set up a “Event Destroyed” node in the pawn to
destroy/despawn its own camera actor and HUD from play when it’s destroyed, and have it
respawn them when it’s spawned again, and/or throw in a few IS Valid nodes into those
actors/widget so they don’t work when no valid pawn is present. In this example you can fix it up
in fairly quick order if you know what you’re doing in the blueprints, but it does require some
work.

This is all to say, be warned that when using existing prebuilt game modes and systems,

frameworks, etc… they may not support things like the pawn or something being changed,
destroyed, etc… so if you want to use this in one of these, be aware that they might not support
the idea of swapping pawns itself, weather you do that on your own, with this system, or any
other, it’s a limit of how some stuff is designed. And modifying them may be quick, or may be
long. Just be aware of that limit in advance if you want to add possession changes and/or
vehicles into your game, be it using this product, any other, or just implementing such on your
own.

Updates

3/12/2018:
Added an array variable for auto disabling Look At Info elements when possessed

system is possessed/unpossessed. By adding integer values into this array it will automatically
disable/enable the look at info Is Active array for those elements when entered/exited, if on the
same actor.

Added a "Sole Interaction" variable on the possession system so if enabled you don't
have to manually plug in the interaction message on the actor, and the interact component will
send it directly to the possession system of that actor if appropriate.

Also added an interaction type variable for the Possession system to properly use this
function.

Added an option to directly contact the Look At Info system from the interaction system,
once again meaning you don’t have to set up those nodes from the connections manually if you
are only using my own components and not mixing in other functions or stuff of your own that
would need to make use of it on the actor. The overall idea of all of these is to save time when
you are only connecting these interaction/look at messages into my own components provided
in this package. If tying your own systems into them, you’ll likely be leaving some of these
disabled as may be needed, but overall it should speed up most people's work with these.

“Send Look At Requests Directly To Look At Info Component” added to Interact_BP,

default category.

“Sole Interact Method On Actor”, “Interaction Type”, and “Auto Disable/Enable Look At

Info Elements” options added to Default category in Possession_System_BP.

~3/15/2018:
Added a Demo UI Widget to the project, and incorporated it into the 3rdperson character

BP. You can now swap between a UI widget or the in world floaty text using a variable in the
3rdpersn character BP (meant to be set before starting the game). This can help those trying to
figure out how to set up a UI using widgets with the Look_At_Info_BP to get started, and also
can help them figure out some of the basics for making replicated UIs.

Also fixes an issue with automated Look At Info requests from the component using the
option to directly contact the Look At Info components in the Interaction BP always returning
element 0 responses.

~11/15/2018:

Updated some tooltips on exit/enter/interact point keywords, and also added ability to
automatically pick an exit point even if none was listed for a given enter point.

~4/4/2019: MULTI Possesion System
Added a new Multiple Possession blueprint (Possesion_System_M_BP) for

supporting multiple controllers to effectively possess a single actor. This relies on the creation of
possession pawns that should be attached to the actor, and are what a player will actually
possess when they are in a given vehicle slot, however the Possesion_System_M keeps track
of the various pawns, players original pawns, and controllers. So each pawn can simply send
their requests to be moved to another spot, or to exit the actor to the Possesion_System_M
component on the main actor, and it can keep track of everything.

This allows for multiple players to occupy and swap out between parts of the same
vehicle, like two players in a tank. One driving and one manning the turret.

This system also allows for the old character pawn to be moved to a seat socket, and
updates the various actors with info on these changes so you can have a character assume a
given animation when in a given location for a vehicle.

The main additional actions required to use this new Possesion component, are to in the
construction script, set the Pawn List and the Seat Component List for each of the positions.
The seat component is a component (like an arrow) that an original pawn would be attached to
when in that position or slot. The Pawn List will contain pawns that the player would end up
possessing (in most cases, the slot 0 might as well be the actor in question to cut down on extra
pawns needed). The additional pawns can be added as child actors, or spawned during play as
may be needed. There is no inherent requirement for a pawn, however you’ll generally need to
set up events to forward the desired input commands to the parent actor. For example for a
Turret in a tank, a pawn made to hold a player for that position would want to forward turret
rotation updates and cannon firing events to the main tank actor so it can execute those actions.
It would also want to have some events setup for leaving that vehicle position, or swapping to
another position, that would be forwarded to the Possesion_System_M component on the
parent actor.

Here are some options for the Possesion_System_M_BP when in an actor.

The Possesion_System_M_BP has some similar options to the original possession

system, but also some different ones. The most notable differences are exiting, now moving an

existing pawn to a new location, doesn’t reliably keep the pawn from exiting if that area is
blocked (though this may change in future updates).

Next, is the Positions Info category. Here you set the finer details on all of the individual
positions. Seat Priority Lists, will show the possible positions you can enter from a given entry
position keyword of the same array element, and in the order they will be tried for.

Entry and Exit position Keyword arrays will identify components with the given keywords
and use them for that position. Note that all interact or exit components must also include the
Keyword appropriate to them from the Default category.

Next is the Seat Type List, that allows you to set a value to identify that positions type.
This comes from a custom Enumeration added to the package, and you can modify it to have
whatever types of positions you want. The Possesion_System_M itself does nothing with this
info, other than store it and provide it to all relevant actors upon a possession change with the
other possession update info. So if your original pawn receives Possession Info telling it it’s now
possessing a position in another actor, it will also know the seat type for that position. This can
be used to setup how it should animate or pose or behave for a given position.

The sorted list values will be generated by the component itself once it starts play, based
on the found components.

Another key part is that you’ll want to setup the following in the construction script.

Informing the Possesion_System_M_BP component of what all pawns it has for each position,
and well as seat positions. In this case the first position (tank driver) is the tank actor itself, and
the second position (turret operator) is a Turret Pawn child actor made specifically for this tank
actor.

Here is an example of how you can set up a pawn actor to contact the parent actors
possession component to request a movement or to exit that position.

Beyond this most functions of a pawn will be unique to your specific pawn and parent

actor, such as forwarding when to shoot, rotate a turret, or perform whatever other action you
should be able to perform from that position. Keep in mind that to be able to make use of this to
its best, you’ll need to understand replication and how to send commands over a network to the
parent actor, and how to have those actions show up on all clients as is desired. There are
many ways to approach this, from some actions being simple one off events, to more constant
things like movement where you might want the local client to be able to see its own actions
immediately and locally even before the server is aware of the changes, in other cases you
might want to confirm with the server before making changes to things like movement. In some
cases you’ll go for a network heavy but smooth option, and for others you might simplify actions
into a series of updates for a desired value that will be lerped towards on the server or clients,
so as to allow for a somewhat smooth seeming action with minimal network cost. It all depends
on your needs.

For the demo, most actions are on the more expensive but smooth (and simple to
execute) side, and should not be taken as ideal examples of how to set up such actions yourself
for your own game, but mostly as a proof of concept to show the ability to control the parent
demo tank even from the child Turret Pawn.

~6/10/2019:

Added better support for remote control actors, so with multi possession system you can
just not set a position component or exit keyword/component and your original actor will remain
at its original location upon possessing and exiting.

-7/26/2019:
Added a new option under exiting rules category for multi possession system controlling

if the original pawn will be “teleported” or not when moved. Set to true if using a fully simulated
skeletal component, false if not and you want hair or other simulations to keep working to at
least some extent during the movement.

-8/12/2019:
Fixed issues that could produce a weird bug in CharacterMovement components that

could result in faulty animations and some other issues.
Also fixed an issue allowing multiple players to enter the same spot of the multi

possession system.

-8/14/2019:
Added more options for managing rotation/location upon unpossessing an actor for the

multiple possession system. It can now exit an actor exactly where it entered relative to the
possessed actor.​
​ Player controller is also rotated upon exiting to match the actor for dismounting at weird
angles in some situations.

-11/30/2021:
Fixed an issue with exiting on slopes with the multi possession system possibly leaving

the controller improperly rotated on clients in multiplayer sessions.

(Planned update when I get around to it (no current eta, just a future idea))
Options for look at info system interaction in the multi possession system components.

Rather than just auto disabling the look at info for a seat position/component when its spot is
filled, to have a series of options for each seat position in the actor, and to display whatever seat
is next available should you enter through a given interaction point (currently if one interaction
point allows for use of two seats, if the first seat is full it just would disable that if given the
option, this idea is to auto update those values to what they should be at that moment given the
current seating position, such as saying it’d send you to the second possible seat that is still
open, only disabling it when there are no spots left.

Q and A

Q:How do I add multiple functions to one vehicle? (like opening doors or stuff)
​

A: First, make sure that your possession system has “Sole interact method On Actor” set to
false. With that on false, the interact system will send a message to the actor using the
interact_BPI interface. So you’ll need that on your actor, then go to the interfaces and interact
notification function. By default you’d have it set up something like this.

This is where interact requests come through the actor, normally you want it to still forward onto
the possession system should it contain an interact volume of the possession system. But to
add some extra functions like opening a trunk, opening a door, or an external control panel for
an auto turret or whatever, we can plug any such custom behavior in here too.
Here we have some volumes in the actor that relate to each of these, if you interact with them,
then it will instead perform that action rather than checking for possession.

Here, we simply check if the interacted component equals the desired volume, and trigger a
custom event for that if true. You also might want to check if the given interaction type is there
for these actions depending on your game/situation, but this is the general idea. Just make
custom events in your actor that handles these various other behaviors, kind of like how the
door examples will open/close based on you interacting with their volumes, same basic idea.

For handling the look at requests, you’d need to manually toggle these now, in this case rather
than toggling visible look at reponses, we’d probably instead toggle the response type between
open/close for right door. So here’s an example of how the door event might use Look at info.

—----------
Q: My vehicle is despawning/my character respawning at random seeming when driving around.

A: In UE5 in particular if the vehicle has "Is Spatially Loaded" checked in the details panel in the
level, when the Player Character passes over a World Partition in the Vehicle, the Vehicle may
reload. This can result in it despawning.​
Also check for level limits, killboxes, or anything else that may destroy actors upon
entering/leaving a given area.

—----------
Q: In multiplayer, my vehicle begins jittering around and bouncing weirdly, possibly very
stuttery/choppy seeming.

A: Depending on multiplayer settings if you don't set the relevancy/replication settings right on
an actor it might unload or start getting really jittery if too far from the host/server. Check net
relevancy settings if it is on your vehicle actor/components. This feature makes objects far from
the host or players lower their priority for net updates, depending on game settings it may only
care about the host meaning other players can be affected by this.

—----------

Q: When I try to possess something, my game breaks. Random icons, a bunch of error
messages, the camera gets stuck in the ground, etc…​
​
A: Test with a demo possessable cube, if doesn’t happen when you try to possess it with your
actor in your level, then it might be how you set up possession/the camera on your own
vehicle/etc…​
If it still happens, then it’s most likely from your game mode, player controller, etc… If you are
using a pre packaged game system like a third person shooter setup, or Survival Game Kit, then
you may need to modify those or simply not use them. The reality is many prebuilt game
mode/kits that give you a good starting point for a given type of game, don’t work well when you
try to add/modify things beyond that specific starting game mode. Adding vehicles for example.
When you possess a new vehicle/actor, you are unpossessing your original pawn, possibly
despawning it too. Some of these system will throw errors not finding the original pawn to check
its health, food, hunger, stamina, inventory, etc… Or might have kill cams that trigger thinking
you died because youre original pawn is no longer possessed or present, forcing you out of the
newly possessed vehicle and into a death view or such.
The details vary heavily from product to product so I can’t comment on them all, and not being
the one to make them can’t reliably offer support. But in general you’d need to modify them so
they don’t throw errors when the player reference disappears or the player controller is
controlling something that doesn’t have their preset components/references… Liberal use of
adding “is valid” nodes can stop errors, but often you’ll need more work to make them support
vehicles than just stopping the errors.​
I recommend asking in advance if these game modes/packages would support a player
possessing a different pawn when using them, or not, before buying them. Assuming you plan to
have vehicle or such in your game. Some do, some don’t. Some don’t but it’s a fairly quick fix to
make them work, others don’t and it’d be hours and hours to rebuild them so they do… So ask
and check in advance if they can support vehicles or possessing other pawns to save yourself
some time and trouble.

	How To Use - Interact System
	How To Use - Actor Possession System
	How To Use - Look At Info System
	How To Use - Camera Controller
	Interact System Options
	Possession System Options
	Look At Info Options
	Camera Controller Options
	Contact And Things to Keep In Mind
	Limits of Possession System
	
	Updates
	Q and A

