

Yet another version control tutorial

This won’t turn you into a Git sorceress or wizard but
hopefully you will be less confused after it.

Contributors:

●​ Rémi Gau
●​ Sofie Van Den Bossche
●​ 22 January 2020 @OpenMR Benelux 2020 <3 - typo corrections by:

○​ Zsuzsika Sjoerds
○​ Stijn Denissen

●​ Add your name if you spot any typo and make improvements! :D
●​ ...

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 1/26

Goals​ 3

What to install?​ 3

If something is unclear...​ 3

How to Git?​ 4
Using Git(Kraken) to keep track of your code history​ 4

Setup: Open GitKraken and log in with your GitHub account​ 4
Create a new local repository [git init]​ 5
Add a description to your project​ 6
Staging the changes [git add]​ 7
Committing the changes [git commit]​ 8
The holy “trinity”: edit → stage → commit​ 9
Adding new code: Branching [git branch; git checkout]​ 10
Adding new code: Merging [git merge]​ 11

How to GitHub?​ 12
Using GitHub to backup your code​ 12

Put your files and your changes online​ 12
Linking the local to the remote repo [git remote add]​ 14
Saving the state of repository [git push]​ 15

Using GitHub to collaborate with others​ 16
Making a copy of someone’s repository: forking​ 16
Copying a repository from your account to your computer [git clone]​ 16
Making some changes to the code​ 18
Ask the owner of the upstream repository to merge your changes into his/her codebase:
pull request​ 18
Reviewing and accepting the pull request​ 20
Updating your local repo after the pull request [git pull]​ 22
Using GitKraken to make a pull request and do a code review​ 23

What now?​ 24
Make a pull request on the repository for this workshop​ 24
Create your own website using GitHub pages​ 24
Familiarize yourself with the command line version of Git​ 24

Glossary​ 25

FAQ​ 26

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 2/26

Goals
This short workshop will not turn you into Git and GitHub wizards but it should hopefully:

1)​ make the terminology less scary so that you won’t be as confused when you try it on
your own;

2)​ guide you on how to version control some simple code;
3)​ guide you on how to use some of GitHub’s functions by quickly creating your own

academic website (e.g. https://academicpages.github.io/).

What to install?

●​ Download the file editor Atom (https://atom.io/) if you don’t already have a generic
decent editor on your computer like emac, vim, sublime…

●​ Create a GitHub account if you don’t already have one (https://github.com).
●​ Add your name and GitHub username to this file.
●​ Install GitKraken (https://www.gitkraken.com/) and login into GitKraken using your

GitHub account (setup 1, see this cheat sheet for help)

If something is unclear...

●​ Something does not work. Ask a question: we are here to help!
●​ Some term is too confusing: we have added a glossary at the end of this Google Doc. If

the word is not in there, let us know about it during the workshop and we will add a
definition so it can help others.

●​ Feel free to add a comment to the relevant section and assign it to
@sofie.vandenbossche93@gmail.com or @remi.gau@gmail.com.

●​ You can also post comments and suggestions on Slack!
●​ GitKraken cheat sheet
●​ GitKraken help

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 3/26

https://academicpages.github.io/
https://atom.io/
https://github.com
https://docs.google.com/spreadsheets/d/1dOkVPZyK1qlVoE0pl5C05xb788QQBjwpx_ERz5TbKlQ/edit?usp=sharing
https://www.gitkraken.com/
https://www.gitkraken.com/downloads/gitkraken-for-github-cheat-sheet-v3.pdf
mailto:sofie.vandenbossche93@gmail.com
mailto:remi.gau@gmail.com
https://www.gitkraken.com/downloads/gitkraken-cheat-sheet-jun19.pdf
https://support.gitkraken.com/start-here/interface/

How to Git?
In this first section, we will see how you can use Git to keep track of changes you have been
making to your code (i.e. version control) on your LOCAL machine (e.g. laptop). To this end, we
will use GitKraken, a Graphical User Interface for Git (which can be easily downloaded for free
on Windows, Mac or Linux).

For those who might have any prior experience using Git in the terminal, matching terminal
commands will be stated as well. In the second section “How to GitHub?”, we will see how you
can back up the code you’ve written with GitKraken on your LOCAL machine to GitHub, a
REMOTE platform in the cloud for which you need an internet connection. Then, we will see
how you can use GitHub to collaborate with others on the same codebase.

Using Git(Kraken) to keep track of your code history

Setup: Open GitKraken and log in with your GitHub account

●​ After downloading GitKraken, open the GUI and sign in with your GitHub account by
clicking on “Sign in with GitHub”. If you have not created a GitHub account yet, please
do so first. As a student, you can apply for the GitHub Student Developer Pack, which
includes offers and benefits from GitHub partners.

●​ Thereafter, a new tab will be opened on your browser, where you will be asked to
authorize GitKraken access to GitHub. Click on “Continue authorization”.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 4/26

https://www.gitkraken.com/download
https://www.gitkraken.com/downloads/gitkraken-for-github-cheat-sheet-v3.pdf
https://www.gitkraken.com/download
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-a-student-developer-pack

Create a new local repository [git init]

●​ Create a new (local) project folder, i.e. a Git repo(sitory) that will be tracked by Git and
contain all your project files (command: git init) by clicking on “Start a local repo” (or go
to File → Init Repo.

●​ INPUT: fill out all the non-optional fields:
○​ name: name of the repository (e.g. github_repo_OMRB)
○​ initialize in: path to the directory where you want to save the repository

The optional fields (i.e. .gitignore Template, License, LFS) fall outside of the scope of
the current tutorial and thus will be left empty. After all the non-optional fields are filled
in, click on “Create Repository”.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 5/26

https://support.gitkraken.com/working-with-repositories/open-clone-init/
https://git-lfs.github.com/

OUTPUT: A new initialized Git project at the specified repository path containing a blank
README.md file (see: bottom right corner of the above figure). You can also (obviously)
browse this newly created folder with your file explorer.

Note 1: You can initialize a repository in a folder that already contains some file(s).
Note 2: Only the files that are in the folder where you have initialized the repository will be
tracked by git.

Extra: hidden .git folder

Add a description to your project

In order to create clear project documentation, a default README.md file is added; written
using Markdown (a simple markup language). First, we will add a project description:

1.​ Open the file using Atom or your favorite text editor.
2.​ Add some content to the file. It could be:

○​ # Project description
○​ a paragraph of filler text using lorem ipsum.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 6/26

https://www.lipsum.com/

Extra: Note you can also modify the file in GitKraken
by right-clicking the README.md file and selecting
“Edit file”. The file will be opened into edit mode. The
“editable” tag in the upper left corner, denotes that you
can edit the current file. The blue dot in the upper-right
corner indicates unsaved changes. In order to save
them, hit Ctrl/Cmd + S.

Staging the changes [git add]

●​ You have made some changes to a file. GitKraken will let you know by showing a new
line at the top of the central window with “//WIP” (Work In Progress) followed by a pen
and a number. The number indicates how many files have been changed.

●​ The right hand column of GitKraken lists the files that have been changed in the box
“Unstaged files”.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 7/26

https://support.gitkraken.com/working-with-files/editing-files/
https://support.gitkraken.com/working-with-files/editing-files/
https://support.gitkraken.com/working-with-commits/staging/

You can click on each of those files to open the “Diff view” that will show you the lines in this
file that have been changed

Now we want to tell Git to keep track of this file. The first thing to do is to “stage” the file before
we tell Git to take a snapshot of it.

●​ Stage the file by right-clicking on it and selecting “Stage” or by clicking the “Stage file”
button that appears when you hover on the right of it.

●​ If you want to stage all of the files that have been changed you can simply click on
“Stage all changes”. This will move the files in the box “Staged files” below.

Extra: if you are using the command line, the command git status would give information about
what file has been changed, added, deleted, or staged. The command git diff would give you
something a bit like the “Diff view” telling about which specific lines in a file have been
changed.

Committing the changes [git commit]

Now we want to take a snapshot of our project that includes all the changes we have just
staged. For Git that means we want to create what’s called a “commit”. A bit like a checkpoint in
the history of your project.
Each commit has to have a commit message that is very short summary of what was added to
the project in this commit. Once your project history grows, the list of commit messages will
create a log that will help you figure out what happened when: so make sure the message
header you write is as short, clear and unambiguous as possible.
You also have the possibility to make more extensive commit message with a header and a
body, if you want to get into details or give reasons why some changes were made.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 8/26

https://support.gitkraken.com/working-with-commits/commits/

1.​ In GitKraken, once you have staged all the files you want to commit, write your commit
message in the bottom right section of the main window in the “Summary” (for the
message header) and “Description” (for a more lengthy version).

2.​ Click on the “Commit changes to ? files”

Once you have done that you should see that a new commit has been at the top of your
project history in the central window of GitKraken with the commit message next to it.

The holy “trinity”: edit → stage → commit
A lot of using Git is basically going through cycles of:

1.​ editing some files
2.​ staging them
3.​ committing them

Feel free to make some more changes, add new files, and commit them to practice this. Also try
to remove some things you added to see how they show up on the Diff view. And if you remove
a file you also have to commit the deleted file to tell Git about it.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 9/26

Remember that GitKraken will keep track of changed, added, and deleted files by showing it at
the top row of the central window.

If you create new files you will see “+” followed by the number of files created. If you delete new
files you will see “-” followed by the number of files deleted. And if you want more details, you
can always click on that top row to see the list of unstaged files.

Extra: git log would be the command to use in a terminal to get an overview of the commit
history and also to search for specific commits by date, by submitter, by commit message...

Adding new code: Branching [git branch; git checkout]
Now we are going to develop our project by adding a new file to it. A good practice when you
want to start developing something new in a project (e.g. additional code…) is to do this in what
is called a “branch”. It allows you to implement changes without affecting previously committed
files.

Branches are like different versions of the same project that might start from the same point but
can develop in very different directions. It is a bit like if at one point you created a copy of the
folder containing your code and you started doing different things in the 2 folders. Working with
branches in Git does the same but allows more flexibility and provides you with other
advantages.

Until now you have been working on the default branch called the “master” branch: in a newly
initialized repository, the only branch created is the master branch. You can see all the branches
of your project listed under LOCAL in the left hand column of GitKraken.

1.​ Create a new branch by right-clicking on the master branch and selecting “Create branch
here” [git branch].

2.​ A panel will open in the central window where you have to give a name for this new
branch. Let’s call it “Dev” for development.

You will have a new “Dev” branch listed under LOCAL. Next to it you will also see a tick showing
on which branch you are. To reuse the analogy of the several directories above, the tick shows
you in which directory you are.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 10/26

In Git, when you change branches, you are “checking out” a branch: a bit like checking out a
book in a library. In GitKraken you can checkout a branch by double clicking in the left column
[git checkout].

1.​ Check out the Dev branch if it is not already the case.
2.​ Add a new file to your project. For example, add a “test.md” file using Atom or another

text editor. You can also add an image, some MATLAB or Python code file… Remember
that you need to add this file IN the folder where you initialized the repository for Git to
see this file.

3.​ Stage and commit the file(s).
4.​ Now open a file explorer window (or finder or nautilus depending on the operating

system your are using) and go to the directory where your project is.
5.​ Now checkout the master branch in GitKraken and see what happens to the file you

have just created: the content of the folder changes depending on which branch is
checked out

6.​ Checkout the Dev branch again and see if the file reappears.

Adding new code: Merging [git merge]
Now you have 2 different branches. Your Dev branch is ahead of the master branch because it
has some commit that does not exist in the master branch. But how do you bring the changes
made on your Dev branch into your master branch? That’s when “merging” branches comes into
play. Merging takes the commits on two different branches and combines them.

Once again, when coming back to our 2 folders example from above, it would be like taking the
new content from one folder and dropping it into the other folder. We are going to merge the
new changes from Dev into the master branch.

1.​ Checkout the master branch.
2.​ Right-click on the Dev branch and select “merge Dev into master”

This will create a new commit on master that represents where the merge has happened.

Extra: You might sometimes run into what is called a “merge conflict”. This happens when you
are trying to merge 2 branches where the same line in the same file has been modified. A bit
like when you are copying the content of a folder into another folder and your operating system
finds 2 files with the same name. In that case, it will ask you which one you would like to keep. A
merge conflict is the same with Git, except that Git is smarter and will ask you which lines of the
2 different files you would like to keep. ​
GitKraken has a useful visual interface that can help you solve those problems. Let us know if
this happens and we will walk you through it.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 11/26

https://support.gitkraken.com/working-with-repositories/branching-and-merging/

How to GitHub?

In this second section, we will first see how to use GitHub to back up and keep track of the
changes you have been making to your code on a remote place in the cloud. Then we will see
how you can use GitHub to collaborate with others on the same codebase.

Using GitHub to backup your code

Put your files and your changes online

All the files and the history of the changes you made are for now on your local machine (e.g.
laptop) only. They are stored on what is called a local repository.
We now want to put them online so that they are:

●​ backed up;
●​ can be easily accessed and/or modified by you from another computer or someone else.

To do this, we need to first create a remote repository to host them.

1.​ Login onto your GitHub account and create a repository by clicking on the “+” sign at the
top right corner of the screen:

2.​ On the next screen you should fill in the name of the repository:
Keep it fairly short and self-explanatory: trust us, this will help when you start having
many repositories. The name does not have to match with the name of the folder where
your files are stored on your local machine.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 12/26

3.​ Decide whether you want this remote repository to be public or private. Choose public.

Public repositories can be viewed by anyone on the internet where as private
repositories can only be accessed to the owner of the repository and the people who
have been added as collaborators. Since 2019, you can have as many private
repositories as you want without a special GitHub account (Pro or Student). However,
GitKraken will not let you work on private repositories unless you have the Pro version of
the software.

4.​ We want to create an empty repository so don’t ask to create a README file (as we
already have one in our local repository) or a .gitignore or license file.

5.​ Click on “Create repository”; you have now created the empty, remote repository and
GitHub should open a help page giving you some instructions on what to do next.

In our case the next things we need to do are:

●​ To “link” this remote repository to your local one;
●​ Move all the files and their history into the remote repository.

To do this we will need the URL of this remote repository that is displayed on the help page that
appears on GitHub when you create an empty repository. This URL should have the following
format: https://github.com/your_username/repo_name.git

If you are using the command line, this help page will actually also tell you which commands to
type to do the next two steps. It is a very useful reminder.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 13/26

https://github.blog/2019-01-07-new-year-new-github/
https://github.com/your_username/repo_name.git

Linking the local to the remote repo [git remote add]
Before you can tell Git to save the content of your local repo online, your first need to tell it that
a place exists where to save things. In Git lingo that means you need to add a remote to your
local repository. How to do so?

1.​ To add a remote in GitKraken you need to click on the “+” sign that will appear when you
hover over the “Remote” on the left-hand column.

2.​ This will open the “add remote” panel where you can paste the URL in the “pull URL”
box.

3.​ Give a name to the remote you are adding. A common name you will often find is
“origin”, but feel free to call it something that makes sense to you.

4.​ Click “Add remote”. The new remote should appear in the left column.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 14/26

Saving the state of repository [git push]
We now want to save the changes we did. In the Git world, we say that we want to push our
local changes to the remote repository.

1.​ You should first choose the branch, you want to save. So checkout the master branch by
double-clicking on it in the left-hand panel.

2.​ To push changes in GitKraken, you simply need to click on the Push button at the top of
the window.

3.​ The first time when you click on it, GitKraken will ask you where you want to push those
changes. It will ask for:

a.​ the name of the remote;
b.​ the name you want to give to the branch where you will push.

GitKraken will guess that you want to push your changes on the only remote you have (“origin”)
and will give the remote branch the same name as the branch you have currently checked out
(this is actually a better practice unless you want to make your life extra complicated).
The remote branch will be added under the remote repository in the left-hand column.
You can now say that your local branch is tracking your remote branch.

4.​ Go back on GitHub and refresh the page of your repository. It should now show a
content that mirrors the content of the master branch on your local repository.

5.​ You can now check out the other branches you have in your local repository and push
them to your remote repository.

6.​ If you commit new changes to one of your local branches, you can then simply push your
changes to your remote by clicking push.

GitKraken will show you where each branch is in the commit graph, so you can figure out if your
local branch is ahead of your remote branch: meaning that you have local commits that you
have not pushed on your remote. If this is the case, you will also see a number with an arrow
pointing up in front of the branch name under the “Local” section: this tells you the number of
commits you have not yet pushed.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 15/26

Using GitHub to collaborate with others
In this workflow, you want to use the codebase developed by someone else and possibly
expand on it, improve or fix something. So you will copy someone’s repository on your GitHub
account and then on your computer. You will make some changes to the code, push those onto
your remote repository and then ask the owner of the original repository to integrate your
improvements into their codebase.

Making a copy of someone’s repository: forking
The first step is to create a copy on your GitHub account of the repository that you are
interested in and that is currently located on someone else’s account. This is called “forking” or
creating a “fork” of the repository.
In this workshop, you can fork the repository created by your neighbour in the previous step.
Otherwise you can look at the usernames of the people present at the workshop here and fork
one of their repositories. How to proceed?

1.​ You can search users in GitHub by using the search bar at the top left of the screen.

2.​ Once you have found the user, you can select the repository you want to fork. We will
call it the “upstream” repository.

3.​ You can then fork the upstream repository by clicking the “Fork” button at the top right.

Once this is done you will find a copy of the upstream repository you forked on your
account. This way you can make all the changes you want to this code without affecting
the content upstream material.

Copying a repository from your account to your computer [git clone]
So now we have a remote repository on your GitHub account that does not have a local
counterpart on your machine. So we need to make a local copy: in the Git world this is called
“cloning”.

1.​ To clone a repo with GitKraken go to File → Clone Repo.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 16/26

https://docs.google.com/spreadsheets/d/1dOkVPZyK1qlVoE0pl5C05xb788QQBjwpx_ERz5TbKlQ/edit?usp=sharing

2.​ Then in the next window, you can select the “GitHub.com” panel.
3.​ You then need to mention where you want to clone the repository on your machine.
4.​ Finally you need to say which remote repository you want to clone.
5.​ Once you are done, click “Clone the repo!”

This will create a repository in the folder you chose for “Where to clone to” with the same name
as the remote repo.

If you are using the command line or in case you need the URL of a repository to clone it, you
can find it by clicking the “Clone or download” button on the page of the repo.

By default, only the master branch of the remote repository is cloned, but you can easily create
a local branch to track a remote branch by right clicking on the remote branch you are interested
in the left-hand panel and then select “checkout remote_name/branch_name”.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 17/26

Making some changes to the code
So you want to make some changes to the code. For example, you could simply add a line to
the README file of the repository. So to do this, we will reuse what we have seen so far in this
tutorial.

1.​ Create a branch where you will be making those changes;
2.​ Amend the README file: add whatever you feel like, as this is just for practice;
3.​ Stage and commit those changes;
4.​ Push the committed changes to your remote repository.

Ask the owner of the upstream repository to merge your changes into
his/her codebase: pull request
The next step is to get the changes from your GitHub repo to the upstream repo. You will then
request the owner of the upstream to pull from your repo to his/hers.
In the Git world “Pull” is the opposite of “Push”: the latter sends updates from repository A to
repository B (as we were doing when we were pushing our commits from the local repo to the
remote one), while the former gets updates from repository B to repository A.

1.​ To open a pull request go to your GitHub account on the repository where you have just
pushed the latest commit.

2.​ Click on the “Pull request” tab and then on “New pull request”.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 18/26

3.​ In the next window, you have to decide from which branch (called “compare” in the
figure below) on your repository (called “head repository” in the figure below) should be
merged into which branch (called “base” in the figure below) of the owner of the
upstream repository (called “base repository” in the figure below).

In most cases, you want to do a pull request on the default branch of the repository (that
very often is the master branch), so GitHub will select that default branch but this might
not always be the case.
Similarly be careful which branch on your repository you select. But if you make a
mistake don’t worry, you can always close an erroneous pull request and create a new
one.

4.​ When you are done, click on “Create pull request”.
5.​ This will open a new section asking you to give a name to the pull request and also to

describe the content of the pull request.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 19/26

6.​ When you are done, click on “Create pull request”.

Reviewing and accepting the pull request
Once a pull request is created, there will be a page that presents several tabs. The main ones
you should worry about for now are:

-​ The “Conversation” tab that shows all the commits that are contained in that pull
request and that will be merged into the target branch, and provides a forum where the
different persons involved in the project can discuss what is OK and what not with the
pull request.

-​ The “Files changed” tab that will show all the changes made.

The “Files changed” tab becomes very useful to do a code review and make specific
comments, suggestions, or ask for changes on the content of the pull request.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 20/26

Hopefully while you were busy making a pull request on someone’s repo, someone else was
doing the same on yours. So you should get a GitHub notification about this. Check the bell
symbol at the top-right of the GitHub page:

You can now review the pull request that was made on one of your repositories:

1.​ You can either make a general comment, approve or request changes.

If you request changes, the person who made the pull request would simply have to:
●​ Make the requested changes on the branch that he/she used to for this pull

request;
●​ Commit them on his/her local repository;
●​ Then push them on his/her remote repository.

The pull request will then be automatically updated.

2.​ You can also make a specific comment by clicking on a certain line of a given file.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 21/26

3.​ For now, simply approve the pull request.
4.​ Then go into the Conversation tab and click on “Merge pull request” to integrate all the

suggested changes into your master branch.

Updating your local repo after the pull request [git pull]
You now have some new commits that exist on the master branch of your remote repo but not
on your local repository. So your local branch is lagging behind the remote one. GitKraken will
notify you with an arrow pointing down and a number in front of the master branch name in the
left-hand column: this indicates how far behind (in number of commits) your local branch is.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 22/26

To get the latest commits that are on your remote master branch, you simply need to check out
the master branch (by double clicking on it) and to press the “Pull” button at the top of the
GitKraken window.

Once this is done your will local branch repository will be up to date with your remote branch.

Using GitKraken to make a pull request and do a code review
You can also directly open a pull request from GitKraken, by right-clicking on the branch from
which you want to make a pull request and then click on “start a pull request to X from Y”.

If you actually want to review someone’s pull request on your computer to nt only view the code
but also to test it on your data for example, you can do that by adding this person remote
repository to the list of remote just like you did before. Then you need to checkout the branch
they send their pull request from by double clicking on it.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 23/26

What now?

You have finished before the end of the workshop or you want to practice some more before
starting applying those skills to your code or you want to get more technical. We have some
suggestions:

Make a pull request on the repository for this workshop
You can help us improve the README file of this repository that contains a raw version of this
Google Doc. You can sort of view suggestions for edits on a Google Doc as a sort of pull
request but using a different system. So you can now, for example, make a pull request:

-​ to implement some comments or edits that you, or someone else, made to this Google
Doc during the workshop;

-​ to train yourself at some markdown formatting.

Create your own website using GitHub pages
If you are starting and get confused ask us for help...
https://github.com/academicpages/academicpages.github.io

Familiarize yourself with the command line version of Git
If you are planning to get more comfortable with the command line version of git, we strongly
recommend the version control chapter of the awesome Turing Way Handbook.

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 24/26

https://github.com/Remi-Gau/git_github_workshop
https://help.github.com/en/github/writing-on-github/basic-writing-and-formatting-syntax
https://github.com/academicpages/academicpages.github.io
https://the-turing-way.netlify.com/version_control/version_control.html

Glossary

Some of those were taken from the excellent turing way handbook project. :D

History Gives you an overview of committed changes (e.g. to your code) over
time (i.e. version control).

Initialize Creating a new, empty Git(Kraken) repository (command: git init).

Local (repository) Accessible through your local machine (e.g. laptop; for which you don’t
need an internet connection).

Merge Merging takes the commits on two different branches and combines
them. (reference:
https://support.gitkraken.com/working-with-repositories/branching-and-
merging/)

Push Sending changes to a remote repo. The remote repository is updated
with the changes pushed and now mirrors the local repo.

Remote
(repository)

Accessible through the cloud (e.g. hosted on GitHub; for which you
need an internet connection).

Repository Refers to a project folder that is being tracked by Git and containing
project files. Also called ‘repo’ for short, they can be local as well as
hosted on GitHub (reference:
https://the-turing-way.netlify.com/version_control/version_control.html)

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 25/26

https://the-turing-way.netlify.com/glossary/glossary.html
https://support.gitkraken.com/working-with-repositories/branching-and-merging/
https://support.gitkraken.com/working-with-repositories/branching-and-merging/
https://the-turing-way.netlify.com/version_control/version_control.html

FAQ
1.​ Why can’t I use GitKraken to work with private repositories?

-​ According to GitKraken's website, private repos are not available in the free tier
of GitKraken. You need the Individual or Pro plan.
https://superuser.com/questions/1500265/cant-use-gitkraken-on-private-repositori
es

-​ WORKAROUND FOR STUDENTS: GitKraken Pro accounts are free for students
through the GitHub Student Developer Pack. Apply for a GitHub Student
Developer Pack by following the steps provided at:
https://help.github.com/en/github/teaching-and-learning-with-github-education/ap
plying-for-a-student-developer-pack

2.​ Why can’t I use GitKraken to work with GitHub Enterprise?

→ Same as above (I can’t use GitKraken on private repositories?).

OpenMR Benelux 2020​ -​ Git and GitHub workshop​ -​ page 26/26

https://www.gitkraken.com/pricing#gk-git-client
https://www.gitkraken.com/pricing#gk-git-client
https://superuser.com/questions/1500265/cant-use-gitkraken-on-private-repositories
https://superuser.com/questions/1500265/cant-use-gitkraken-on-private-repositories
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-a-student-developer-pack
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-a-student-developer-pack

	
	
	
	
	
	Yet another version control tutorial
	
	Goals
	
	What to install?
	If something is unclear...
	How to Git?
	Using Git(Kraken) to keep track of your code history
	Setup: Open GitKraken and log in with your GitHub account
	Create a new local repository [git init]
	Add a description to your project
	
	Staging the changes [git add]
	Committing the changes [git commit]
	The holy “trinity”: edit → stage → commit
	Adding new code: Branching [git branch; git checkout]
	Adding new code: Merging [git merge]

	How to GitHub?
	Using GitHub to backup your code
	Put your files and your changes online
	Linking the local to the remote repo [git remote add]
	Saving the state of repository [git push]

	Using GitHub to collaborate with others
	Making a copy of someone’s repository: forking
	Copying a repository from your account to your computer [git clone]
	Making some changes to the code
	Ask the owner of the upstream repository to merge your changes into his/her codebase: pull request
	Reviewing and accepting the pull request
	Updating your local repo after the pull request [git pull]
	Using GitKraken to make a pull request and do a code review

	
	What now?
	
	
	Make a pull request on the repository for this workshop
	Create your own website using GitHub pages
	Familiarize yourself with the command line version of Git

	
	
	
	Glossary
	FAQ

