t[PMR] exam 2012 may

(a) LGHMM / linear dynamic system / Kalman filter

(b) Second-order autoregressive (AR(2)) model

(c) Second-order moving average (MA(2)) process

(d) Discrete-state hidden Markov model (posterior marginal)

(a) Factor analysis (FA) model (mean, covariance, rotation of factors, ICA vs. FA)

(b) Mixture of Gaussians (EM algorithm)
(c) Gaussian random variables (addition, mean, covariance)

(a) (?) Junction Trees
(b) Multivariate Gaussians
(c) Model comparison (Bayesian approach, MLE approach)

1

(@) LGHMM / linear dynamic system / Kalman filter

1.

(a) Describe the structure of a linear Gaussian hidden Markov model (LGHMM,
or linear dynamical system, or Kalman filter), and the parameters that define
it. Draw and label a diagram of the LGHMM as a graphical model.

[6 marks |




» Dynamical model
Zni1 = AZp + Wny
where w1 ~ N(0,T) is Gaussian noise, i.e.

P(Zny1|2a) ~ N(AZp, T)

» Observation model
Xn= CZn+ ¥p
where v, ~ N(0, L) is Gaussian noise, i.e.
D(Xn|Zn) ~ N(Czn, L)

» Initialization
P(Zq) ~ N(pq, Vi)



(b) Second-order autoregressive (AR(2)) model

(b) A second-order autoregressive (AR(2)) model for a time series has the form
[7 marks |

Ty = Ty + oo + Wy,
where a; and ay are coefficients, and w, is Gaussian noise N (0, ?).

i. Draw the graphical model corresponding to the AR(2) process, and
state what set of variables should be conditioned on to make the past
and future conditionally independent. Explain your reasoning. HINT:
you may wish to consult the graphical characterization of conditional
independence given in the preamble.

ii. By defining an appropriate state vector, rewrite the AR(2) process as a
vector AR(1) process.

(i)
note:
we are dealing with a second-order markov chain because there are no hidden variables
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» An AR(2) process can be written as a vector AR(1)
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(c) Second-order moving average (MA(2)) process
(¢) A second-order moving average (MA(2)) process has the form |7 marks |

xy = fowy + Srwy_q + Bowy_a,

where the Js are coefficients and the ws are independent Gaussian random
variables N (0, 0?).

i. Draw a graphical model of the MA(2) process, showing both the w and
x variables.

ii. For the MA(2) process, x; and x;_4 are independent for sufficiently large
d. Argue what the minimum value of d is to achieve independence, and
justify your result.

iii. For the MA(2) model derive expressions for var(z;) and cov(x;, z;—1) in
terms of the 3s and o2.




(ii)

p(xt’ xt—3) = p(BOWt + B1Wt—1 + Bzwt—z’ Bowt—3 + B1Wt—4 + BZWt—S)
=pr@Bw, +Bw,_, +Bw _JpBw, _;+Bw _, +Bw, )
= px)p(x,_,)

X 10 =10)

) —3:

dbeing the empty set

(iii)
given:
w ~ N(0,6°) IID
var(xt) = var(Bowt + B1Wt—1 + Bzwc—z)
= var(Bowt) + var(Blwt_l) + var(Bzwt_Z)

= Bozvar(wt) + Blzvar( Wt—l) + Bzzvar(wt_z)

2 2 2 2 2 2
—BOG +Blc +BZG
2.2 2 2
=o’®, +8,"+8,)

cov(xt, xt_l) =FE [xtxt_l] —E [xt]E [x

split the problem up...

E [xtxt_ 1]

= E[(Bw, + Bw,_, +Bw,_)Bw, +Bw,_ +Bw )

-]



note for w with different indexes:

E[BOZW w o] = BOZE[W w

t t—1 t t-1

]

(wt and w,_, are independent, b/c no connections within hidden layer)
(and expectation/mean of w is 0)
2 2
=B, E[w]E[w,_]=B"-0-0
thus, only need to take into account multiplications with w of same index

2 2
= EIBBgw,_, TBBwW,,]

2 2
=BBEwW,_ 1+BBEW,_,]
note that var(w) = E[w]’ — E[w’]
thus E[w’] = E[w]’ + var(w)
where E[w]’ = 0 still

= B,Bvar(w,_ ) + BB var(w _,)

= B,B,0" + B,8,0°

E[xt]E [xt_l] =0
because x is a linear combination of w which are zero mean, thus x is also zero mean

2 2
= cov(xt, xt_l) = E[xtxt_l] = [31[300 + BZBIG

(d) Discrete-state hidden Markov model (posterior marginal)

(d) Consider a diserete-state hidden Markov model with latent states denoted [5 marks |
by z and visible states denoted by x. Given a sequence of N observations

X = (X1, X2,...,Xy) there will be a posterior probability distribution over
the latent state Z = (21, Z,...,2zx). The standard forward and backward
variables

(I(Zn = ?) = P(XL e Xny 2y = ?)1 ﬁ(zn = .}) = p(x-r1_+1, s :Xlen = .})

can be computed recursively. Derive an expression for the posterior marginal
p(z,|X) in terms of the relevant o and (3 variables, justifying any conditional
independences you use.

P(Zn | X1:n)
= p(Zm X1:N) / p(X1:N)
Zy, Xpiny Xnetn) / P(X4:n)
netn | Zny Xi:n) P(Zny Xp:n) / SUM_Z, P(Xniron | Zoy Xi4:n) P(Zny Xi:n)

=p(
= p(x
= p(Xn+1:N | Zn) p(zn) X1:n) / SUm_Zn p(zn) X1:N)



= a(z,) b(z,) / Sum_z, a(z,) b(z,)

Define a(z,) = p(zn, X1:n)

= SUM_z,.1 P(Zny Zn-15 X1:n-15 Xn)

=SuUm_z, P(Xy|Zn, Znots Xiin1) P(ZalZoots Xiine) P(Zne1y Xiint)
=5Sum_z, p(X,12,) P(z,12,1) a(zq4)

= P(Xn12Z4) S_Zn.1 P(Zn]Zn-1) A(Z4o1)

Define b(z,) = p(Xn.1:n ] Zn)

= SUM_Z,.1 P(Znets Xnets Xnezn|Zn)

= SUM_Z;.1 P(Xne1 | Znety Xnzins Zn) P(Knszen | Zoets Za) P(Znit 1Z0)
= SUM_ Zouy P(Xoq 1 Zoit) POz | Zot) P(Zaer120)

= SUM_z,.1 P(Xn.1]Zne1) B(Zns1) P(Zni1120)

Green: conditional independence from red

@ Alpha
a(Zny1) = Y oA2Zn)az,z,., P(Xn+11Zns1)
Zn
Initialization
(1) = p(X1,21) = P(X1(Z1)P(Z1) = P(X1[2Z1)mz,
@ Beta

B(zn) = Z B(Zn+1 )aznz,,+1 P(Xnt1|Zni1)

Zn1

Initialization: 3(zn) is the vector of ones as

> alzn)B(zn) =) alzn) = Z p(X1,...,Xn,2Zn = i) = p(X)

i i



2 .

(a) Factor analysis (FA) model (mean, covariance, rotation of factors, ICA vs.
FA)

2. (a) The factor analysis (FA) model is defined by [7 marks |
x=p+Wz+e

where x is a p-dimensional visible variable, p is a constant vector, z is a

m-dimensional Gaussian latent variable with z ~ N(0,1,,), W is a p x m

matrix and e is a p-dimensional Gaussian random variable with mean 0 and

diagonal covariance V. z and e are independent.

i. p(x) defined by the factor analysis model is Gaussian. Compute its
mean and show that the covariance is WW7 + 0,

ii. The factor analysis model defined above is not unique because of the
problem of rotation of factors. Explain what this means, and demon-
strate how this leaves p(x) unchanged.

iii. Independent components analysis (ICA) is also a latent variable model
for data. Describe the structure of the ICA model and state the simi-
larities and differences of the ICA model to FA. Does ICA suffer from
the problem of rotation of factors?

(i)
given:
x=pn+Wz+e
with
u constant vector
z ~ N(O,1)
w eR”*™  (constant)
e ~ N(0,1)
mean:

E[x] = E[u] + E[WZz] + E[e]

:1u—+—9—+—th-|— U should be 0 right? | think so as well. my bad!
=u+0+0

variance
cov(x) = cov(pn) + cov(Wz) + cov(e)

=0+ cov(Wz) + ¢



0+ wiw' + y
ww' + g

(ii)
Wibi: p(x) = N(4, WW™ + W) depends on W only in the form WW'. So, given any rotation matrix
R, we can rotate W with R yielding W = WR. WW'T = WR(WR)" = WRR™W™ = WWT,

iii. ICA does not suffer that problem, it find the actual latent variables, not a linear subspace of
the data.

Yes it does, with a Gaussian prior on the hidden sources, which is why you have to use a
non-Gaussian prior - see Barber p.475.

ICA structure:

» A non-Gaussian latent variable model, plus linear
transformation, e.g.

im
pz) x [Je
i=1
x=Wz+p+te

» Hotational symmetry in z-space is now broken

» p(x) is non-Gaussian, go beyond second-order statistics of data
for fitting model



(b) Mixture of Gaussians (EM algorithm)

(b) The log likelihood given n data points z; (with 7 = 1,...,n) under a mixture
of k univariate Gaussians is given by

n k
L(#) = Zlog {Z j p(.-r?;&j)} .
i=1 j=1
Here 7; is the mixing proportion of the jth Gaussian,

(2 — py)? } :

1
pLr; f.) = -5 — .
plil6;) e exp{ 202

and i, crf are the mean and variance, respectively, of the jth Gaussian.

i. By differentiating the expression for L(#), give the conditions that hold
on the maximum likelihood estimators of the means, and interpret this
result.

ii. The EM algorithm is a general method used to fit a latent variable
model to data. Explain what are the relevant latent variables in the
mixture model case. Explain the meaning of the E and M steps, and
describe qualitatively how the EM algorithm works for fitting the given
Gaussian mixture model. (You are not required to derive specific forms
of updates for the mixture model.)

HINT: The expression for the expected complete data log likelihood is
given in the preamble of this paper.

[10 marks |

(c) Gaussian random variables (addition, mean, covariance)

(¢) = and y are Gaussian random variables with = ~ N(u,,02), y ~ N(u,, 02),
and r and y are independent. Let z =z + y.

i. Consider the 3-dimensional column vector random variable (z,y,2)’.

Calculate its mean vector and covariance matrix.

ii. You observe a particular value z* of z. The posterior distribution p(x|z*)
is Gaussian; calculate its mean and covariance.
Do you expect that the posterior distributions of  and y will be corre-
lated?
HINT: see the form of the conditional distribution for a multivariate
Gaussian given in the preamble.

HINT:

(8 marks |




Then the conditional distribution p(x;|xs) is Gaussian, with mean and covariance
given by
c -1
Pl = M+ DXy (X2 — py),
= -1
112 — Z:11 - E12222 E21-

3 .

(a) (?) Junction Trees

3. (a) If x denotes the random variables in a graphical model, then the joint dis- [10 marks |
tribution p(x) defined by the junetion tree is given by

<) — [Ic Yel(xc) ,
p(x) s ®s(xs) (1)

where W (x¢) is a clique potential on the clique variables x¢, and ®4(xg) is
a separator potential on the separator variables xg. The aim of the junction
tree algorithm is to maintain this representation of the joint distribution
while making the clique potentials consistent.

Consider two adjacent cliques V' and W< in the junetion tree, and denote
their separator by S. In their initial-State they have clique and separator
potentials of W(V'), U(W) and ®(S).

To pass a message from V' to W, we first update the separator potential to
*(S) = >y ¥(V) and then make the update W* (W) = W(W)®*(5)/®(5).
Also W*(V) = W(V).

i. State the initialization used for the clique and separator potentials if the

junction tree is derived from a directed graphical model (belief network).

ii. Specify the updates for S. V and W when passing a message from W to
V. HINT: these potentials are usually denoted with a #x superscript.

iii. Show that the *-superscript updates given above and your updates from
part (ii) maintain the joint distribution given in equation 1.

iv. Explain what is meant by the potentials U(V) and ¥(W) being consis-
tent on S.
If the only two cliques in the system are V' and W, show that they are
consistent after message passing has occurred in both directions.

Tim: not examinable to this extent this year?

Tadas: No. But we are expected to know what are junction trees in general and how they help
us computing probabilities in trees (source Amos).

Tim: does anybody know know “what are junction trees in general and how they help us
computing probabilities in trees”? :)



Tadas: They help in with complicated graphical networks where usual inference is hard
(contains loops is the usual case). It replaces connected nodes in a specific way with cliques
that can be represented later as a single node. In the end, you get a tree on which you can do
(easier) inference.

(b) Multivariate Gaussians

(b) Data in class ('} are generated from a multivariate Gaussian with mean g, [6 marks |
and covariance matrix ¥. Data from class Cy are generated from a Gaussian
with mean p, and the same covariance matrix.

i. Show that the surface where

p(C1|x) = p(Cylx)

has the form a - x + ¢ = 0 for some vector a and constant ¢. HINT:
you may make use of the equation for the multivariate Gaussian given
in the preamble.
ii. If the two Gaussians do not have the same covariance matrix, discuss
briefly what form the surface defined by p(C|x) = p(Cs|x) will have.
HINT:
. 1 1 Ty -1
ply) = - exp——=(y — )y — )

2

(c) Model comparison (Bayesian approach, MLE approach)

(¢) You wish to consider the relative merits of two graphical models M and [9 marks |
M, for variables x = (z',...,2™). These models have different graphical
structures but contain no hidden variables.

i. Describe the Bayesian methodology for medel ecomparison, and explain
what a Bayes factor is.

11. Now assume that M, is an elaboration of M, 1.e. that it contains all of
the edges in M, and extra ones as well. Explain how these models would
be compared using maximum likelihood, and the potential problems of
this method.

Compare this behaviour to the Bayesian approach.

iii. Instead of simply comparing M; and M, we might wish to consider all
possible directed acyclic graphical models on m nodes. However, the
number of possible structures is super-exponential in m. Describe how
yvou might carry out the search in practice.
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