
t[PMR] exam 2012 may 

 
 

1                    . 
(a) LGHMM / linear dynamic system / Kalman filter 
(b) Second-order autoregressive (AR(2)) model 
(c) Second-order moving average (MA(2)) process 
(d) Discrete-state hidden Markov model (posterior marginal) 

2                    . 
(a) Factor analysis (FA) model (mean, covariance, rotation of factors, ICA vs. FA) 
(b) Mixture of Gaussians (EM algorithm) 
(c) Gaussian random variables (addition, mean, covariance) 

3                    . 
(a) (?) Junction Trees 
(b) Multivariate Gaussians 
(c) Model comparison (Bayesian approach, MLE approach) 

 
 

1                    . 

(a) LGHMM / linear dynamic system / Kalman filter 

 



 



(b) Second-order autoregressive (AR(2)) model  

 

 
Kshitij, Frederico, Tim: 
(i) 
note: 
we are dealing with a second-order markov chain because there are no hidden variables 
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...read : A independent of B given C 𝐼(𝐴, 𝐵 | 𝐶)
 
(ii) 



 
 

 

(c) Second-order moving average (MA(2)) process 

 

 



Kshitij, Frederico, Tim: 
(i) 
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(ii) 
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​ being the empty set  ϕ
 
(iii) 
given: 

 IID 𝑤 ∼ 𝑁(0, σ2)
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​ split the problem up… 
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​ note for w with different indexes: 
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because x is a linear combination of w which are zero mean, thus x is also zero mean 
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(d) Discrete-state hidden Markov model (posterior marginal) 

 

 
p(zn|x1:N) 

= p(zn, x1:N) / p(x1:N) 

= p(zn, x1:n, xn+1:N) / p(x1:N) 

= p(xn+1:N | zn, x1:n) p(zn, x1:n) / Sum_zn p(xn+1:N | zn, x1:n) p(zn, x1:n) 

= p(xn+1:N | zn) p(zn, x1:n) / Sum_zn p(zn, x1:N) 



= a(zn) b(zn) / Sum_zn a(zn) b(zn) 

  

Define a(zn) = p(zn, x1:n) 

= Sum_zn-1 p(zn, zn-1, x1:n-1, xn) 

= Sum_zn-1 p(xn|zn, zn-1, x1:n-1) p(zn|zn-1, x1:n-1) p(zn-1, x1:n-1) 

= Sum_zn-1 p(xn|zn) p(zn|zn-1) a(zn-1) 

= p(xn|zn) S_zn-1 p(zn|zn-1) a(zn-1) 

  

Define b(zn) = p(xn+1:N|zn) 

= Sum_zn+1 p(zn+1, xn+1, xn+2:N|zn) 

= Sum_zn+1 p(xn+1|zn+1, xn+2:N, zn) p(xn+2:N|zn+1, zn) p(zn+1|zn) 

= Sum_ zn+1 p(xn+1|zn+1) p(xn+2:N|zn+1) p(zn+1|zn) 

= Sum_zn+1 p(xn+1|zn+1) b(zn+1) p(zn+1|zn) 

 

Green: conditional independence from red 

 

 

 



2                    . 

(a) Factor analysis (FA) model (mean, covariance, rotation of factors, ICA vs. 

FA) 

 

 
(i) 
given: 

 𝑥 = µ + 𝑊𝑧 + 𝑒
with 

 constant vector µ
 𝑧 ∼ 𝑁(0, 𝐼

𝑚
)

​ (constant)​𝑊 ∈ 𝑅 𝑝 𝑥 𝑚

​  𝑒 ∼ 𝑁(0, ψ)
 

mean: 
 𝐸[𝑥] = 𝐸[µ] + 𝐸[𝑊𝑧] + 𝐸[𝑒]

​ note:  where E[z] = 0 𝐸[𝑊𝑧] = 𝑊𝐸[𝑧]

 
 = µ + 0 + 0

 
variance 

 𝑐𝑜𝑣(𝑥) = 𝑐𝑜𝑣(µ) + 𝑐𝑜𝑣(𝑊𝑧) + 𝑐𝑜𝑣(𝑒)
​ note is constant, thus cov( )=0 µ µ

 = 0 + 𝑐𝑜𝑣(𝑊𝑧) + ψ



 = 0 + 𝑊𝐼𝑊𝑇 + ψ

 = 𝑊𝑊𝑇 + ψ
 
(ii) 
Wibi: p(x) = N(μ, WWT + Ψ) depends on W only in the form WWT. So, given any rotation matrix 
R, we can rotate W with R yielding W’ = WR. W’W’T = WR(WR)T = WRRTWT = WWT. 
 
iii. ICA does not suffer that problem, it find the actual latent variables, not a linear subspace of 
the data.  
 
Yes it does, with a Gaussian prior on the hidden sources, which is why you have to use a 
non-Gaussian prior - see Barber p.475. 
 
 
ICA structure: 

 



(b) Mi​xture of Gaussians (EM algorithm) 

 

 

(c) Gaussian random variables (addition, mean, covariance) 

 
HINT: 



 

 

3                    . 

(a) (?) Junction Trees 

 

 
Tim: not examinable to this extent this year? 
Tadas: No. But we are expected to know what are junction trees in general and how they help 
us computing probabilities in trees (source Amos). 
Tim: does anybody know know “what are junction trees in general and how they help us 
computing probabilities in trees”? :) 



Tadas: They help in with complicated graphical networks where usual inference is hard 
(contains loops is the usual case). It replaces connected nodes in a specific way with cliques 
that can be represented later as a single node. In the end, you get a tree on which you can do 
(easier) inference. 
 

(b) Multivariate Gaussians 

 
HINT: 

 

 

(c) Model comparison (Bayesian approach, MLE approach) 
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