
2019-03-26 - golang-tools session - meeting notes

Previous session notes

2019-02-26 - golang-tools session - meeting notes

Recording

https://www.youtube.com/watch?v=fJsi85TunPs

Attendees

● Jay Conrod
● Ian Cottrell
● Paul Jolly
● Michael Matloob
● Roger Peppe
● Rebecca Stambler
● Marwan Sulaiman
● Billie Cleek

Notes

gopls support in vim-go

● [Billie] Now on by default for autocompletion, jumping to definitions. Escape hatches may
go back to gocode. Would like to be able to use gopls to find out info about identifiers,
similar to guru definition. Seems like an LSP deficiency.

● [Ian] There are some ways, like hover. gopls has a guru equivalent mode on the
command line. That should show what to do.

● [Billie] Nice foundation, should be easy to hook in additional changes. For
autocompletion with gocode, we get full function signature, but gopls doesn't provide that
right now.

● [Ian] LSP has signature help that's supposed to drive that sort of thing.
● [Paul] There's a gopls wiki. For people like Billie. Is it worth pulling together some

documentation from the editor perspective?
● [Rebecca] Definitely. It would be nice to have a list of the features we support, but a lot of

stuff is changing quickly. Feel free to edit. Also file issues about what should be in the
different fields.

● [Billie] Would be nice to put the go doc into the documentation field.
● [Paul] Is there any guidance on what contributors should work on?
● [Rebecca] People have messaged me on Slack, probably the best way to reach out.

Happy to answer questions and review CLs.
● [Rebecca] There's a gopls label on the issue tracker. Issues for new contributors are

marked as "suggested". Issues for me and Ian are marked "fundamental". This should
be written in the wiki, too.

https://docs.google.com/document/d/1e5JvIKrBS8WKGbMSjDK7H9pMfWQAZ7V-QvQodRhqBl0/edit?usp=sharing
https://www.youtube.com/watch?v=fJsi85TunPs

● [Ian] We've been focused on making the core functionality, but the details can use more
tweaking. Happy to take contributions there.

Demo with gopls in VSCode

● [Rebecca] Will show how to configure in settings. For now you have to enable language
server and set gopls to be the default language server. This will eventually be the
default.

● [Rebecca] Features have to be enabled. Not all are supported yet. Eventually, they'll all
be on by default.

● [Rebecca] Need to turn off buildOnSave and vetOnSave to avoid getting findings from
both build and gopls.

● [Rebecca] formatOnSave, organizeImports needed for goimports functionality.
● Completion should show signature, but hitting enter will only insert symbol. Open

parenthesis will show signature information. Hover shows full signature.
● Go-to-definition works. Organize imports works on save or as a command. Vet and

compile errors show up in Problems pane.
● Hover over type definition shows tags, hard to read. Would be a great starter issue.
● Go-to-definition on an import path doesn't work.
● [Roger] godef goes to the package directory.
● [Ian] It's unclear what the editor should do. Opening a directory in VSCode means

opening a new workspace, which is not what we want.
● [?] Does it go-to-definition work inside $GOPATH/pkg/mod?
● [Ian] It should work in modules, but it's broken under some circumstances in GOROOT

itself.
● [Rebecca] We're caching now, so speed is much better.
● Wiki has list of every editor that supports gopls.
● [Roger] How much memory does this use in a large project?
● [Rebecca] No information about that right now. Should get some metrics. It was crashing

earlier, less of a problem now.
● [Paul] Do you end up firing an instance of gopls per module?
● [Rebecca] One of the starting parameters is the root URI. Opening a different file may

cause it to crash. Ian has thoughts, not sure about the answers yet.
● [Marwan] Should we have a unique template for gopls? Might be useful to copy alternate

tool settings to make issues more reproducible.
● [Ian] Would like to add a bug verb to the command line, which would submit that

information, logs, and such.

Discussion on go/packages

● Adding go/packages to standard library
○ [Michael] About adding go/packages to the standard library. Personally don't

think it's ready, prefer to hold off for a few more releases or not at all. Will be
sorted out when Russ comes back, interested in hearing other opinions.

○ [Paul] Is there any rush?
○ [Michael] go/build doesn't really work anymore, need to keep working

functionality in the standard library. There is an idea that people should be able to
write programs that only depend on the standard library, I think that's a mistake.

○ [Paul] In #tools slack, someone was using go/build to determine directory of a
package. In go/packages which supports other build systems, there is no concept
of a package directory. Moving this into the standard library would lose
information compared to go/build.

○ [Michael] A lot of things go/build does aren't necessary. Would prefer people
don't make assumptions. Example, someone was writing a generator that
depends on vendored code. They can't pass in package paths because with
vendoring, imports depend on where you are.

○ Official line is that go/build is meant to be used by the go tool itself during a build.
Long term, we'd like people to use go/packages instead.

● Splitting mode bits: Unifying LoadSyntax and LoadAllSyntax
○ [Michael] When Alan was creating this, there was an idea of a linear order of

modes, each mode would provide more information. Most people calling
LoadSyntax don't care about dependencies, but they get all the dependency
information because LoadSyntax > LoadImports. So we'd like to ask people for
specifically which bits they want.

○ CL 162140 is this proposal. So users can ask for fields on the packages they ask
for, but there's no way to say what fields you get on dependencies. So you get
the same information on dependencies right now.

○ Happy to have more feedback and comments on this.
○ I'd love to add a v2, but we're stuck in this crazy world of versions. Opens a rats

nest of issues, and we won't be adding explicit versions for a while.
○ [Paul] How bad would it be to break compatibility?
○ [Michael] If we did a v2, we'd remove the load modes and just use the bits. This

is mainly a performance question. (The strict compatibility guarantee is another
reason not to put it in the standard library).

○ [Ian] If we did move it, we'd make these changes on the way in.
○ [Michael] Breaking backward compatibility is not an option now though. We

already got in trouble for making changes we said we'd make when it was
marked experimental.

○ [Roger] Unfortunate that go/packages shells out to the API.
○ [Jay] Necessary because gopls may not be built with the same version of Go as

is being used in the workspace. If the question is about performance, I'm working
on performance improvements for 1.13, on the order of 30-50% for "go list",
hopefully more.

https://go-review.googlesource.com/c/tools/+/162140

Fact support in analysis

● [Michael] API makes distinction between facts and results. Facts are passed between
the same analysis on different packages. Results are passed between different analyses
on same package.

● Fact API is convenient, and request is to make facts available as results.
● Had discussion with Alan. This might make the API a little more convenient, but it

muddles the distinction.
● Once we make a change to the API, we can't reverse it. We should be very

conservative.
● [Jay] Does this means fact types would be a new API for anlayses? So it also imposes

compatibility constraints on analysis authors/
● [Michael] The idea was that authors could opt in or out by exporting the type.

Other business

● [Ian] There are some recent issues with repositories that have no go.mod in the root
folder, but multiple go.mod in subfolders. Can also have problems for a replacement
module being interpreted as a separate module, not within a child workspace.

● gopls could allow editors to make more decisions. We cache heavily, meaning we need
full dependency graph. Each cache is specific to a main module / workspace / VSCode
window.

● We have a concept called a view that the cache lives inside. At the moment, cache is
tied to the init call in the root dir.

● LSP has concept of workspace folders, and we could start a new view per workspace
folder. One instance of gopls could support multiple caches and multiple views.

