
[Design Doc] Liquid Clustering
Author: Jiaheng Tang
Date: Nov 2, 2023

Motivation 1
Hive-style partitioning 2
ZORDER clustering 2

Terminology 2
Requirements 2

Functional requirements 2
User surface 3
Proposal Sketch 4

Better clustering with Hilbert curves 4
Incremental clustering using ZCube 7
User surface 10

Protocol Change 12
Design Decisions 12

Decision 1: Should we rewrite any already-optimized files? 12
Option 1: Always rewrite all files 12
Option 2: Only optimize fresh data 12
Option 3 (Recommended): Use minimum cube size threshold 12

Decision 2: Should we introduce a Liquid-specific table feature? 12
Option 1: No, but depend on ClusteringTableFeature (Recommended) 12
Option 2: No 13
Option 3: Yes, introduce a LiquidTableFeature 13

Motivation
This design doc proposes Liquid clustering, a new, flexible, and incremental clustering
mechanism for Delta. Users no longer need to specify the clustering columns like
OPTIMIZE ZORDER BY requires; instead, clustering columns are specified during table
creation and persisted in table metadata. Liquid also allows users to change the clustering
columns to adapt to the workload. After changing the clustering columns, existing data is
not re-clustered, and only newly ingested data is clustered by new clustering columns.

Partitioning/clustering is a common technique to manage datasets to reduce unnecessary
data processing. Hive-style partitioning and ZORDER clustering are existing solutions in
Delta, but both have limitations.

mailto:jiaheng.tang@databricks.com


Hive-style partitioning
Hive-style partitioning clusters data such that every file contains exactly one distinct
combination of partition column values. Although Hive-style partitioning works well if
tuned correctly, there are limitations:

● Since partition values are physical boundaries for files, Hive-style partitioning by
high cardinality columns will create many small files that cannot be combined,
resulting in poor scan performance.

● In Spark/Delta, once a table is partitioned, its partition strategy cannot be changed,
thus being unable to adapt to new use cases such as query pattern changes, etc.

ZORDER clustering

ZORDER is a multi-dimensional clustering technique used in Delta. The OPTIMIZE
ZORDER BY command applies ZORDER clustering and improves the performance of
queries that utilize ZORDER BY columns in their predicates. However, it has the following
limitations:

● OPTIMIZE ZORDER BY is an operation that rewrites all data in the table, resulting
in high write amplification. Also, no partial results are saved when execution fails.

● ZORDER BY columns are not persisted and the user is required to remember the
previous ZORDER BY columns, often causing user errors.

Terminology
● Liquid clustering: A clustering technique that utilizes the Hilbert curve and ZCube

to support incremental clustering.
● Write amplification: Signifies rewriting the same rows multiple times.

Requirements

Functional requirements
MUST:

● User Surface
○ Users can define clustering columns in any order when creating Liquid

tables.
○ Users can change or remove clustering columns on existing Liquid tables via

ALTER TABLE CLUSTER BY.



○ Users can specify up to 4 clustering columns by default.
○ Users can rename clustering columns on existing Liquid tables if column

mapping is enabled.
○ Users can manually invoke liquid clustering via the OPTIMIZE command.
○ Clustering columns are exposed to users via the DESCRIBE DETAIL

command.
○ Users can create Liquid tables using CREATE TABLE LIKE.

● Clustering
○ Liquid clustering must cluster ingested data incrementally.
○ Liquid clustering must be applied with the current clustering columns.
○ Liquid clustering should produce good file sizes, and it should respect the

target file size set for OPTIMIZE.
○ After altering clustering columns, Liquid clustering should be applied with

new clustering columns only to newly ingested data, not to the existing data
before altering.

● Other
○ Must prevent the older Delta writers or external writers that are not aware of

tables with Liquid clustering from running OPTIMIZE ZORDER BY on
tables with Liquid clustering.

User surface

Liquid clustering introduces the following new SQL syntaxes:

SQL Syntax Description

CREATE TABLE
<table>

USING delta

CLUSTER BY
(<col1>,
<col2>, …)

Creates a Delta table such that the columns specified with
CLUSTER BY are used as Liquid clustering columns.



ALTER TABLE
<table>

CLUSTER BY
(<col1>,
<col2>, …)

Alters the Liquid clustering columns. Data ingested after
altering and data not yet clustered is clustered with new
clustering columns.

ALTER TABLE
<table>

CLUSTER BY
NONE

Removes the Liquid clustering columns. No clustering is
performed for future ingestions.

OPTIMIZE
<table>

Triggers Liquid clustering. Unlike the existing OPTIMIZE
semantics - which is compacting files, OPTIMIZE on Liquid
tables triggers compaction if there are no clustering columns
set, or clustering otherwise.

OPTIMIZE ZORDER BY is not allowed for clustered tables.

Liquid clustering introduces the following new DeltaTable APIs:

API name Description

clusterBy(co
lNames:
String*):
DeltaTableBu
ilder

Creates a Delta table such that the columns specified with
CLUSTER BY are used as Liquid clustering columns.

We will work on the DataFrameWriter API when clusterBy() is available in OSS Spark
(WIP).



Proposal Sketch

Better clustering with Hilbert curves
Today, Delta supports OPTIMIZE ZORDER BY command that utilizes the Z-Order curve
(design doc) for data clustering. We propose to use Hilbert curve, a continuous fractal
space-filling curve as a multi-dimensional clustering technique for Liquid, which
significantly improves data skipping over ZORDER.

Similar to how ZORDER works, Hilbert curve mapsmultidimensional data onto a 1D space
by fitting them on the curve. This preserves the locality very well meaning points that are
close in the 1D space should also be close in multi-dimensional space. We can leverage this
property to do e�cient data skipping. Take the following example of a simple two-column
table, with 64 distinct records. Each dotted rectangle represents a single file, and each file
contains 4 records.

Fig 1: Adjacent points on the curve always have distance = 1

https://docs.google.com/document/d/1TYFxAUvhtYqQ6IHAZXjliVuitA5D1u793PMnzsH_3vs/edit
https://en.wikipedia.org/wiki/Hilbert_curve


Fig 2: Partition the data by points on the curve and pack them into files

In this example, we first translate the two columns A and B into a numeric range of [0, 7] by
range partitioning the value distribution. The Hilbert curve gives us a nice property that
adjacent points on the curve always have a distance of 1. To make use of this, we partition
the data by the points of the curve, and then pack the nearby points into good-size files.
This means each file contains points that are close to each other on the curve, which
means they’ll have close min/max ranges for each of the clustering dimensions.

Why is the Z-curve worse than Hilbert?
Remember the nice property of the Hilbert curve (see Fig 1)? The Z-curve doesn’t have that
property. Z-curve’s adjacent points don’t always have distance = 1 and it has large jumps in
the curve. Those jumps translate into nonlinear (and potentially huge) increases in
bounding box size for sub-ranges of the curve. For instance, let’s look at the same orange
line of length 6. For Z-curve, the bounding box shown in Fig 3 covers the entire space! For
the Hilbert curve, a range of this length could only cover half the space (as shown in Fig 4),
because it could cover only two adjacent quadrants. This means for Z-Order, potentially
some files will have min/max range equal to the full range, and data skipping can’t skip
these files.



Fig 3: Z-curve: The bounding box for the orange line spans the entire space

Fig 4: Hilbert Curve: The bounding box for the orange line spans only half the space

Incremental clustering using ZCube
Currently, OPTIMIZE ZORDER BY requires rewriting all data, even if no new files have been
added since the last time. That makes it very expensive to run it on a large table. Also,
when it fails we lose all the progress, and the next run will need to start from scratch.

We propose to introduce incremental clustering capability with Liquid, which allows users
to run OPTIMIZE without rewriting all data. OPTIMIZE will also be completed in batches,



where each batch will produce a single OPTIMIZE commit, so that not all progress is lost
when something goes wrong.

Incremental clustering is built around the concept of ZCubes. A ZCube is a group of files
produced by the same OPTIMIZE job. Since we only want to rewrite fresh/unoptimized files,
we distinguish between already optimized files (that are part of some ZCubes) from
unoptimized files using the ZCUBE_ID tag in AddFile. We’ll generate a unique ZCUBE_ID
using UUID for each new ZCube.

There are a few strategies to pick which files to cluster, and more details can be found
here.

We’ll introduce two configs to provide flexibility for controlling which files to consider for
clustering:

● MIN_CUBE_SIZE: ZCube size for which new data will no longer be merged with it
during incremental OPTIMIZE. Defaults to 100 GB.

● TARGET_CUBE_SIZE: target size of the ZCubes we will create. This is not a hard
max; we will continue adding files to a ZCube until their combined size exceeds this
value. This value must be greater than or equal to MIN_CUBE_SIZE. Defaults to 150
GB.

We call any ZCubes with a size less than MIN_CUBE_SIZE a partial ZCube. All new files will
be considered for OPTIMIZE but we also consider any existing partial ZCubes. Once a
partial ZCube accumulates enough data and crosses the MIN_CUBE_SIZE threshold, it
becomes a stable ZCube, at which point we’ll no longer consider it for rewriting.

Fig 5: ZCube-based incremental clustering

Stable ZCubes may become partial again if DML operations delete too many files, at which
point files for partial ZCubes will be considered for clustering.



Fig 6: Stable ZCube dropping into partial status after deletes

One special case is when users change the clustering columns, we want to keep the old
data untouched, and from that point on only cluster the new data using the new clustering
columns. Therefore, we will persist the clustering columns in AddFile using the
ZCUBE_ZORDER_BY tag to indicate which clustering columns these files are clustered to.
When picking candidate files, we’ll filter out files with a different set of clustering columns.



Fig 7: Flow of OPTIMIZE using ZCube

The illustration above shows the flow of OPTIMIZE using ZCubes. To begin, we select our
candidate files, which encompass both fresh data and any partial ZCubes with the same
clustering columns as our current clustering columns. Then we bin pack the files into
multiple ZCubes and run the clustering algorithm on each of the ZCubes. After execution,
we’ll produce one commit per ZCube to make sure partial results are saved during an event
of crash.

User surface
Users no longer need to specify the ZORDER BY columns. Instead, clustering columns are
specified during table creation using the following syntax.



Unset

JavaScript

CREATE TABLE <table> USING delta CLUSTER BY (<col1>, <col2>, …)

Then, the clustering columns will be saved in the metadata and users can just run the
OPTIMIZE command to trigger clustering.

Users can also run ALTER TABLE CLUSTER BY to change the clustering columns. There are
two variants:

1. ALTER TABLE CLUSTER BY (col1, col2): this will update the clustering columns.
Already clustered data won’t be touched and new data will be clustered by the new
clustering columns.

2. ALTER TABLE CLUSTER BY NONE: this will remove any clustering columns. Already
clustered data won’t be touched and new data will not be clustered. Instead,
OPTIMIZEwill compact the new data, similar to the existing OPTIMIZEwhich runs
file compaction.

Metadata
Liquid clustering will utilize Domain Metadata (design doc) to store the clustering columns
as a DomainMetadata action, which is a part of the Clustering table feature(PR):

{
"domainMetadata": {
"domain": "delta.clustering",
"configuration": "{\"keys\":\"colA,colB\"}"

}
}

Liquid clustering also supports changing, and if columnmapping is enabled, renaming
clustering columns. Note that we do not allow dropping clustering columns, but users can
always do ALTER TABLE CLUSTER BY to move columns out of the clustering columns and
then drop them. To support column mapping, we store columns’ physical names in the
metadata and extract the logical column names for any user-facing commands like
DESCRIBE DETAIL.

https://docs.google.com/document/d/16MHP7P78cq9g8SWhAyfgFlUe-eH0xhnMAymgBVR1fCA/edit#heading=h.c60ogungpazw
https://github.com/delta-io/delta/pull/2264
https://docs.delta.io/latest/delta-column-mapping.html


Protocol Change
Liquid clustering leverages the ClusteringTableFeature, so no additional changes to
the Delta protocol.

The design decision for depending on ClusteringTableFeature can be found here.

Design Decisions

Decision 1: Should we rewrite any already-optimized files?

Option 1: Always rewrite all files
This means keeping only 1 ZCube and for any OPTIMIZE run, merge the existing ZCube with
unoptimized data. This is the current implementation and has a long OPTIMIZE time and
large write amplification.

Option 2: Only optimize fresh data
This means never merging with existing ZCubes. However, many small ZCubes are bad for
data skipping effectiveness. Although within each ZCube data skipping rate would be
similar, since there’s no total ordering across ZCubes, we’ll need to perform data skipping
for each ZCube and the scan time will be linear to the number of ZCubes.

Option 3 (Recommended): Useminimum cube size threshold
In this approach, all new files are merged but also any existing cubes with size smaller than
a given threshold. This gives us lower write amplification than Option 1 while still keeping
the number of ZCubes lower than Option 2, which provides better read performance than
Option 2.

Decision 2: Should we introduce a Liquid-specific table feature?

Option 1: No, but depend on ClusteringTableFeature (Recommended)
By leveraging ClusteringTableFeature(PR), we can prevent older Delta Lake versions and
external writers from running OPTIMIZE ZORDER BY on Liquid tables, which will
invalidate the clustering maintained by Liquid tables.

https://github.com/delta-io/delta/pull/2264


We’ll follow the ClusteringTableFeature’s spec by tagging OPTIMIZE’s output files with
CLUSTERED_BY set to liquid.

Option 2: No
No additional table feature that external readers/writers need to support. However, writers
can invalidate the clustering on Liquid tables by running OPTIMIZE ZORDER BY.

Option 3: Yes, introduce a LiquidTableFeature
This will have the same benefit as option 1, but with the additional overhead of introducing
another table feature. ClusteringTableFeature is built for this exact purpose, to serve as a
table feature for any kind of clustering implementation.


