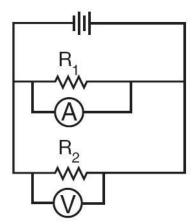
II. Electric Power

 $\label{eq:power-time} \begin{array}{l} \textbf{Power} - \text{time rate of doing} & & \\ & (\text{watts} \) \ P = \ W \ (J)/\ t \ (\text{seconds}) \\ & \text{since V = W/q , CROSS MULTIPLY then W = } \\ & \text{SUBSTITUTE *** P = V[q/t] = } \\ & \text{All these equations are in the reference table} \\ & P = \text{VI since V = IR. THEN P = } \\ & \text{THEN P = } \\ & \text{THEN P = } \\ & \text{THEN P = } \\ \end{array}$

Electric Energy and Heat

Power/Energy Questions


Ex) Series circuit w/ two lamps, the battery supplies a potential difference of 1.5 volts. The current in the circuit is 0.10 ampere, what rate does the circuit use energy?

Ex) In which kind of circuit would a 5.0 Ω resistor be brighter (more power) than a 10. Ω resistor?

Hint: $P = V^2/R$ and $P = I^2R$

Ex) An electric iron operating at 120 volts draws 10. amperes of current. How much heat energy is delivered by the iron in 30. seconds?

What's wrong with this circuit?

