
GSoC 2024 Final Submission 

Runtime and Memory Optimizations for 
Neuronal Networks & KMeans 

Objectives 

During Google Summer of Code 2024, my goal was to improve the mlpack library by 
focusing on key algorithm optimizations, with an emphasis on research, testing, and 
practical implementation.  

I concentrated on enhancing the performance of Neural Networks by optimizing 
convolution operations and implementing post-training quantization to reduce model 
size and increase speed. For KMeans, I aimed to boost the algorithm's speed and 
parallelization capabilities using OpenMP, while also restructuring the code to achieve 
more efficient execution and a smaller binary size. In the case of DBScan, my objective 
was to accelerate the algorithm through parallelization and reduce its binary footprint 
by refining space-consuming functions.  

Alongside these specific goals, I reviewed and validated existing code examples to 
ensure they functioned as intended. While SVD optimization was considered, it 
remained a lower priority compared to the other objectives. Throughout the project, 
my work was research-driven, with a strong focus on testing various approaches to 
identify and implement the most effective solutions for improving the mlpack library. 

 

Deliverables 
 

Mlpack examples 
https://github.com/mlpack/examples/pull/226 (Merged) 

 
In this contribution, I updated and fixed the Python notebook examples in the mlpack 
repository. This involved aligning the notebooks with the latest mlpack API changes, 
correcting typos and resolving bugs. I ensured all notebooks are fully functional by 
testing and making necessary adjustments. Additionally, I added a new notebook for 
contact tracing using DBSCAN, adapted from the C++ version. To address SSL 
verification issues, I updated dataset URLs to a more reliable source, eliminating 
certificate errors and ensuring smooth operation. These updates improve the usability 
and reliability of the Python examples in the repository. 
 
 
 

https://github.com/mlpack/examples/pull/226


 
Optimization Backward function (Convolution) 

https://github.com/mlpack/mlpack/pull/3738 (Merged) 
 

In this contribution, I optimized the backward function in the convolution code, 
focusing on padding, rotation, and dilation operations to reduce computational 
overhead and improve performance. Padding values were integrated directly into the 
convolution operation, and the filter rotation was replaced with matrix flipping or 
transposing combined with reversing, embedded within the convolution step. Dilation 
factors were also embedded directly into the convolution. These changes resulted in a 
speedup, with the optimized code reducing the time from 73222ms to 50517ms in 
benchmarks. The changes were tested, adjusted, and successfully merged. 
 
 

Optimization Dropout and Logsoftmax 
https://github.com/mlpack/mlpack/issues/3662 (Closed) 
https://github.com/mlpack/mlpack/pull/3684 (Merged) 
https://github.com/mlpack/mlpack/pull/3685 (Merged) 

 
I worked on optimizing the LogSoftmax and Dropout layers in mlpack to replace the 
transform function, ensuring compatibility with the Bandicoot library. 

 
 
For the LogSoftmax layer, I tested the Padé Approximant as an alternative to the Fast 
Approximation method for exp(-x). Although the Padé method improved accuracy for 
smaller X values, it caused performance issues with larger values typical in datasets 

https://github.com/mlpack/mlpack/pull/3738
https://github.com/mlpack/mlpack/issues/3662
https://github.com/mlpack/mlpack/pull/3684
https://github.com/mlpack/mlpack/pull/3685


like MNIST. After benchmarking, the OpenMP-optimized Fast Approximation was 
chosen for its better balance of speed and accuracy, leading to faster training times. 
 
In the Dropout layer, I implemented a "Find and Fill" method to replace the transform 
function by directly manipulating matrix elements. While this method was slightly 
slower on larger matrices, it maintained accuracy and, with OpenMP, provided a 
23.2% speedup during MNIST training. 
Both layers now support dual implementations for Bandicoot and Armadillo, enabling 
GPU compatibility.  
 
​ ​ ​ ​  
​ ​ ​ ​ ​ Benchmark repository 

https://github.com/MarkFischinger/mlpack-benchmarks 
 

I conducted research on RDTSC to explore its potential for optimal testing. While it 
showed some initial promise, further investigation revealed it wasn't the best fit for our 
needs. Consequently, I developed a default framework for testing, which was critical 
for maintaining the accuracy of our benchmarks. This foundational work was a top 
priority, as it directly impacted the reliability of all subsequent benchmarks. The 
repository successfully established a solid benchmarking strategy. 
 
 

DBSCAN 
https://github.com/mlpack/mlpack/pull/3771   

(Passes all tests apart from a server-side error) 
 
I optimized the DBSCAN implementation in mlpack to improve performance, 
particularly for larger datasets. 
 
Key improvements included parallelizing the centroid calculation and cluster 
assignments using OpenMP, which significantly sped up these operations. I also 
optimized batch clustering and introduced atomic operations to minimize bottlenecks 
in multi-threaded sections. Additionally, I improved memory locality to boost cache 
efficiency. 
 
These changes resulted in a noticeable speedup in DBSCAN, especially during 
processing of large datasets. The implementation was tested and refined based on 
feedback, ensuring it is both efficient and scalable. 
 
 

Means Optimizations (Naive, Hamerly, Elkan) 

●​ Naive K-Means: PR #3762 (Main, has verified improvements, but needs further 
investigation) 

https://github.com/MarkFischinger/mlpack-benchmarks
https://github.com/mlpack/mlpack/pull/3771
https://github.com/mlpack/mlpack/pull/3762


●​ Hamerly K-Means: PR #3761 (Passes all tests apart from a server-side error) 
●​ Elkan K-Means: PR #3764 (Passes all tests) 

Naive K-Means 

OpenMP was applied to the Naive K-Means algorithm, achieving a 6.3% reduction in 
execution time. After experimenting with fixed block sizes, I switched to a dynamic 
segmenting strategy based on available threads, improving efficiency and memory 
access patterns. 

Elkan K-Means 

In the Elkan K-Means implementation, OpenMP optimization led to a 23.6% speedup. 
The key changes involved parallelizing distance calculations and centroid updates 
while restructuring critical sections to minimize overhead and enhance parallel 
execution. 

Hamerly K-Means 

The Hamerly K-Means saw the most significant improvement, with a 42.6% reduction 
in execution time. The optimization focused on parallelizing distance computations and 
efficiently managing thread-safe operations using OpenMP reduction and atomic 
operations. 

Post-training Quantization 
https://github.com/mlpack/mlpack/pull/3750 

I implemented key aspects of post-training quantization for neural networks, 
converting model weights from float32 to int8. The design is flexible, allowing custom 
quantization strategies, with examples and documentation provided. Following Ryan's 
feedback, I refactored the quantization API to ensure a clearer and more user-friendly 
interface. The updated implementation now needs to pass the newly created tests. 

 
To-Do: SVD Benchmarks 

Benchmark the current SVD methods against arma::svd() in Armadillo to evaluate their 
performance. This task will help determine if any optimization is needed. 
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