GSoC 2024 Final Submission

Runtime and Memory Optimizations for
Neuronal Networks & KMeans

Objectives

During Google Summer of Code 2024, my goal was to improve the mipack library by
focusing on key algorithm optimizations, with an emphasis on research, testing, and
practical implementation.

| concentrated on enhancing the performance of Neural Networks by optimizing
convolution operations and implementing post-training quantization to reduce model
size and increase speed. For KMeans, | aimed to boost the algorithm's speed and
parallelization capabilities using OpenMP, while also restructuring the code to achieve
more efficient execution and a smaller binary size. In the case of DBScan, my objective
was to accelerate the algorithm through parallelization and reduce its binary footprint
by refining space-consuming functions.

Alongside these specific goals, | reviewed and validated existing code examples to
ensure they functioned as intended. While SVD optimization was considered, it
remained a lower priority compared to the other objectives. Throughout the project,
my work was research-driven, with a strong focus on testing various approaches to
identify and implement the most effective solutions for improving the mipack library.

Deliverables

Mipack examples
https://github.com/mlipack/examples/pull/226 (Merged)

In this contribution, | updated and fixed the Python notebook examples in the mipack
repository. This involved aligning the notebooks with the latest mipack API changes,
correcting typos and resolving bugs. | ensured all notebooks are fully functional by
testing and making necessary adjustments. Additionally, | added a new notebook for
contact tracing using DBSCAN, adapted from the C++ version. To address SSL
verification issues, | updated dataset URLs to a more reliable source, eliminating
certificate errors and ensuring smooth operation. These updates improve the usability
and reliability of the Python examples in the repository.


https://github.com/mlpack/examples/pull/226

Optimization Backward function (Convolution)
https://github.com/mlpack/mlpack/pull/3738 (Merged)

In this contribution, | optimized the backward function in the convolution code,
focusing on padding, rotation, and dilation operations to reduce computational
overhead and improve performance. Padding values were integrated directly into the
convolution operation, and the filter rotation was replaced with matrix flipping or
transposing combined with reversing, embedded within the convolution step. Dilation
factors were also embedded directly into the convolution. These changes resulted in a
speedup, with the optimized code reducing the time from 73222ms to 50517ms in
benchmarks. The changes were tested, adjusted, and successfully merged.

Optimization Dropout and Logsoftmax
https://github.com/mlipack/mlpack/issues/3662 (Closed)
https://qithub.com/mlipack/mlpack/pull/3684 (Merged)
https://github.com/mlipack/mlpack/pull/3685 (Merged)

| worked on optimizing the LogSoftmax and Dropout layers in mipack to replace the
transform function, ensuring compatibility with the Bandicoot library.

Processing Times and Error Rates by Matrix Size

*‘l..f’ﬁ?_é Time (ms) --m- Avg Error Padé pAS#as
700 b ==~ FastTime-tms).. —& - Avg Error Fast
600 F =1.3750
500
_ -1.3745 *é
1] =
£ 400 w
S @
] o
£ o
= ol
" 300} 1.3740 2
200
=1.3735
100t
or -1.3730
1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix Size

For the LogSoftmax layer, | tested the Padé Approximant as an alternative to the Fast
Approximation method for exp(-x). Although the Padé method improved accuracy for
smaller X values, it caused performance issues with larger values typical in datasets


https://github.com/mlpack/mlpack/pull/3738
https://github.com/mlpack/mlpack/issues/3662
https://github.com/mlpack/mlpack/pull/3684
https://github.com/mlpack/mlpack/pull/3685

like MNIST. After benchmarking, the OpenMP-optimized Fast Approximation was
chosen for its better balance of speed and accuracy, leading to faster training times.

In the Dropout layer, | implemented a "Find and Fill" method to replace the transform
function by directly manipulating matrix elements. While this method was slightly
slower on larger matrices, it maintained accuracy and, with OpenMP, provided a
23.2% speedup during MNIST training.

Both layers now support dual implementations for Bandicoot and Armadillo, enabling
GPU compatibility.

Benchmark repository
https://qithub.com/MarkFischinger/mlpack-benchmarks

| conducted research on RDTSC to explore its potential for optimal testing. While it
showed some initial promise, further investigation revealed it wasn't the best fit for our
needs. Consequently, | developed a default framework for testing, which was critical
for maintaining the accuracy of our benchmarks. This foundational work was a top
priority, as it directly impacted the reliability of all subsequent benchmarks. The
repository successfully established a solid benchmarking strategy.

DBSCAN
https://github.com/mlipack/mipack/pull/3771
(Passes all tests apart from a server-side error)

| optimized the DBSCAN implementation in mipack to improve performance,
particularly for larger datasets.

Key improvements included parallelizing the centroid calculation and cluster
assignments using OpenMP, which significantly sped up these operations. | also
optimized batch clustering and introduced atomic operations to minimize bottlenecks
in multi-threaded sections. Additionally, | improved memory locality to boost cache
efficiency.

These changes resulted in a noticeable speedup in DBSCAN, especially during
processing of large datasets. The implementation was tested and refined based on
feedback, ensuring it is both efficient and scalable.

Means Optimizations (Naive, Hamerly, Elkan)

¢ Naive K-Means: PR #3762 (Main, has verified improvements, but needs further
investigation)


https://github.com/MarkFischinger/mlpack-benchmarks
https://github.com/mlpack/mlpack/pull/3771
https://github.com/mlpack/mlpack/pull/3762

e Hamerly K-Means: PR #3761 (Passes all tests apart from a server-side error)
e Elkan K-Means: PR #3764 (Passes all tests)

Naive K-Means

OpenMP was applied to the Naive K-Means algorithm, achieving a 6.3% reduction in
execution time. After experimenting with fixed block sizes, | switched to a dynamic
segmenting strategy based on available threads, improving efficiency and memory
access patterns.

Elkan K-Means

In the Elkan K-Means implementation, OpenMP optimization led to a 23.6% speedup.
The key changes involved parallelizing distance calculations and centroid updates
while restructuring critical sections to minimize overhead and enhance parallel
execution.

Hamerly K-Means

The Hamerly K-Means saw the most significant improvement, with a 42.6% reduction
in execution time. The optimization focused on parallelizing distance computations and
efficiently managing thread-safe operations using OpenMP reduction and atomic
operations.

Post-training Quantization
https://github.com/mlipack/mlpack/pull/3750
I implemented key aspects of post-training quantization for neural networks,
converting model weights from float32 to int8. The design is flexible, allowing custom
quantization strategies, with examples and documentation provided. Following Ryan's
feedback, | refactored the quantization API to ensure a clearer and more user-friendly
interface. The updated implementation now needs to pass the newly created tests.

To-Do: SVD Benchmarks

Benchmark the current SVD methods against arma::svd() in Armadillo to evaluate their
performance. This task will help determine if any optimization is needed.

Acknowledgement

| would like to express my sincere gratitude to Ryan and Omar for their guidance and
support throughout this project. Your mentorship has been crucial in helping me
overcome challenges and gain a better understanding of the work. | truly appreciate
the time and effort you both invested in helping me succeed. Thank you for being
exceptional mentors.


https://github.com/mlpack/mlpack/pull/3761
https://github.com/mlpack/mlpack/pull/3764
https://github.com/mlpack/mlpack/pull/3750




	Runtime and Memory Optimizations for Neuronal Networks & KMeans 
	Objectives 
	Means Optimizations (Naive, Hamerly, Elkan) 
	Naive K-Means 
	Elkan K-Means 
	Hamerly K-Means 




