

KafkaIO Dynamic Read
https://issues.apache.org/jira/browse/BEAM-11325

Boyuan Zhang
boyuanz@apache.org

Problem Summary
It has been demanded for a while that KafkaIO can deal with any topic/partition that is
added/removed dynamically during pipeline execution time. When KafkaIO users want to
repartition existing topics, they have to stop the current running pipeline, update the pipeline
code and re-launch it because current KafkaIO implementation has to know the topics and
partitions during pipeline construction time. It’s a huge burden for Beam users to maintain such
a process.

Thus, we want to have KafkaIO be able to read from topics/partitions that are added when the
pipeline is executing. Also, KafkaIO should be able to stop reading from one certain partition
when under following conditions:

●​ When the topic/partition is removed or
●​ When the pipeline author wants to stop reading from this topic/partition

Proposed Solution
For the ability of reading from new added topics/partition, given that we already have
ReadFromKafkaDoFn which is an Splittable DoFn taking any KafkaSourceDescriptor as input
elements, all we need to do is to have a WatchKafkaTopicPartitionDoFn that is able to watch for
growth of topics/partitions and emit corresponding KafkaSourceDescriptor to
ReadFromKafkaDoFn. We are going to expose this ability from KafkaIO.Read API and users
who are interested in this ability need to change the pipeline code. For Dataflow specific, this
change is not update-compatible.

For supporting stopping read from topic/partitions, more changes are required in existing
ReadFromKafkaDoFn:

●​ For deleted topic/partitions, the processElement method needs to return
ProcessContinuation.stop() when the current partition is no longer in the current topic.
Such information can be retrieved by KafkaConsumer.partitionFor(topic) API.

●​ For any topic/partitions, the ReadFromKafkaDoFn and WatchKafkaTopicPartitionDoFn
will allow the pipeline author to register a stopRead(TopicPartition topicPartition)
callback. When it’s the time for WatchKafkaTopicPartitionDoFn to update, it should call
this callback to determine whether one topic/partition has been stopped. Before the
ReadFromKafkaDoFn starts processing TopicPartition, it will call provided
stopRead(TopicPartition current) to decide whether to stop reading.

https://issues.apache.org/jira/browse/BEAM-11325
https://github.com/apache/beam/blob/master/sdks/java/io/kafka/src/main/java/org/apache/beam/sdk/io/kafka/KafkaIO.java#L484
https://github.com/apache/beam/blob/master/sdks/java/io/kafka/src/main/java/org/apache/beam/sdk/io/kafka/ReadFromKafkaDoFn.java
https://beam.apache.org/documentation/programming-guide/#splittable-dofns
https://github.com/apache/beam/blob/7c43ab6a8df9b23caa7321fddff9a032a71908f6/sdks/java/io/kafka/src/main/java/org/apache/beam/sdk/io/kafka/KafkaSourceDescriptor.java
https://github.com/apache/beam/blob/7c43ab6a8df9b23caa7321fddff9a032a71908f6/sdks/java/io/kafka/src/main/java/org/apache/beam/sdk/io/kafka/ReadFromKafkaDoFn.java#L265
https://github.com/apache/beam/blob/master/sdks/java/core/src/main/java/org/apache/beam/sdk/transforms/DoFn.java#L1295
https://javadoc.io/doc/org.apache.kafka/kafka-clients/latest/org/apache/kafka/clients/consumer/KafkaConsumer.html#partitionsFor-java.lang.String-

Here are supported scenarios with this proposed solution for certain given bootstrap_server
strings:

●​ Certain topic/partition is added/deleted.
●​ Certain topic/partition is added, then removed but added again.
●​ Certain topic/partition is stopped if the stopRead(TopicPartition) is provided
●​ Certain topic/partition is added, then stopped but added again is

stopRead(TopicPartition) is provided. It may involve race conditions. Please refer to race
condition discussion.

We are going to focus on the discussion of WatchKafkaTopicPartitionDoFn since the removal
support in ReadFromKafkaDoFn is very straightforward.

WatchKafkaTopicPartitionDoFn Design
There are three key points of this DoFn:

●​ to track current topics/partitions that have been processed by downstream
ReadFromKafkaDoFn and

●​ to regularly query the set of current available topics/partitions and
●​ to emit any new added TopicPartitions

Thus, we are going to use BagState to persist existing TopicPartitions and use processing-time
Timer to do the update regularly.

The major portion of the DoFn looks like:

// The input here is the dummy input with empty key and value.

class WatchKafkaTopicPartitionDoFn extends DoFn<KV<byte[], byte[]>,

KafkaSourceDescriptor> {

 private final String timerId = "watch_timer";

 final String bagStateId = "topic_partition_set";

 // The duration is specified by users.

 private long checkMills;

 // The provided function to check whether current TopicPartition should be

 //stopped.

 private SerializableFunction<TopicPartition, Boolean> stopReadFn;

 @TimerId(timerId)

 private final TimerSpec spec = TimerSpecs.timer(TimeDomain.PROCESSING_TIME);

 @StateId(bagStateId)

 private final StateSpec<BagState<TopicPartition>> bagStateSpec =

StateSpecs.bag();

 private Set<TopicPartition> getAllTopicPartitions() {

 Set<TopicPartition> current = new HashSet<>();

 try (Consumer<byte[], byte[]> kafkaConsumer =

consumerFactoryFn.apply(offsetConsumerConfig)) {

 for (Map.Entry<String, List<PartitionInfo>> topicInfo :

 kafkaConsumer.listTopics().entrySet()) {

 for (PartitionInfo partition : topicInfo.getValue()) {

 current.add(new TopicPartition(topicInfo.getKey(),

partition.partition()));

 }

 }

 }

 return current;

 }

 @ProcessElement

 public void processElement(

 @TimerId("watch_timer") Timer timer,

 @StateId(bagStateId) BagState<TopicPartition> existingTopicPartitions,

 OutputReceiver<KafkaSourceDescriptor> outputReceiver) {

 // For the first time, we emit all available TopicPartition and write them into

State.

 Set<TopicPartition> current = getAllTopicPartitions();

 current.forEach(

 topicPartition -> {

 existingTopicPartitions.add(topicPartition);

 outputReceiver.output(

 KafkaSourceDescriptor.create(

 topicPartition, startOffset, startReadTime,

ImmutableList.of(bootstrapServer)));

 });

 timer.set(Instant.now().plus(checkMills));

 }

 @OnTimer(timerId)

 public void onTimer(

 @StateId(bagStateId) BagState<TopicPartition> existingTopicPartitions,

 OutputReceiver<KafkaSourceDescriptor> outputReceiver) {

 // It’s the time to check whether there is any update.

 Set<TopicPartition> lastUpdated = new HashSet<>();

 existingTopicPartitions.read().forEach(e -> lastUpdated.add(e));

 existingTopicPartitions.clear();

 Set<TopicPartition> currentAll = getAllTopicPartitions();

 // Emit new added TopicPartitions.

 Set<TopicPartition> newAdded = Sets.difference(currentAll, lastUpdated);

 newAdded.forEach(

 topicPartition -> {

 if (stopRead(topicPartition)) continue;

 outputReceiver.output(

 KafkaSourceDescriptor.create(

 topicPartition, startOffset, startReadTime,

ImmutableList.of(bootstrapServer)));

 });

 // Update the State.

 currentAll.forEach(

 topicPartition -> {

 if (stopRead(topicPartition)) continue;

 existingTopicPartitions.add(topicPartition);

 });

 // Reset the timer.

 timer.set(Instant.now().plus(checkDuration.getMillis()));

 }

}

KafkaIO API Exposure and X-Lang Support
There are 3 more APIs we want KafkaIO.Read to expose to take advantage of
WatchKafkaTopicPartitionDoFn:

●​ dynamicRead(Duration interval)
Within it enabled, the KafkaIO.Read will read any available TopicPartition with the
frequency of specific time interval.

●​ withTopicPattern(String topicPattern, Duration interval)
Different from dynamicRead(), it will only keep watching topics that match the provided
pattern.

●​ withStopReadFn(SerializableFunction)

We will also expose these attributes into ReadfromKafka in python SDK for x-lang usages.

Race Condition Discussion
Race conditions may happen under 2 supported cases:

●​ A TopicPartition is removed, then added back again
●​ A TopicPartition is stopped, then want to read it again

When race condition happens, it will result in the stopped/removed TopicPartition failing to be
emitted to ReadFromKafkaDoFn again. Or ReadFromKafkaDoFn will output replicated records.

https://github.com/apache/beam/blob/7c43ab6a8df9b23caa7321fddff9a032a71908f6/sdks/python/apache_beam/io/kafka.py#L110

The major cause for such race condition is that both WatchKafkaTopicPartitionDoFn and
ReadFromKafkaDoFn react to the signal from removed/stopped TopicPartition but we cannot
guarantee that both DoFns perform related actions at the same time.

Here is one example for failing to emit new added TopicPartition:

●​ A WatchKafkaTopicPartitionDoFn is configured with updating the current tracking set
every 1 hour.

●​ One TopicPartition A is tracked by the WatchKafkaTopicPartitionDoFn at 10:00AM and
ReadFromKafkaDoFn starts to read from TopicPartition A immediately.

●​ At 10:30AM, the WatchKafkaTopicPartitionDoFn notices that the TopicPartition has been
stopped/removed, so it stops reading from it and returns ProcessContinuation.stop().

●​ At 10:45 the pipeline author wants to read from TopicPartition A again.
●​ At 11:00AM when WatchKafkaTopicPartitionDoFn is invoked by firing timer, it doesn’t

know that TopicPartition A has been stopped/removed. All it knows is that TopicPartition
A is still an active TopicPartition and it will not emit TopicPartition A again.

Another race condition example for producing duplicate records:
●​ At 10:00AM, ReadFromKafkaDoFn is processing TopicPartition A
●​ At 10:05AM, ReadFromKafkaDoFn starts to process other TopicPartitions(sdf-initiated

checkpoint or runner-issued checkpoint happens)
●​ At 10:10AM, WatchKafkaTopicPartitionDoFn knows that TopicPartition A is

stopped/removed
●​ At 10:15AM, WatchKafkaTopicPartitonDoFn knows that TopicPartition A is added again

and emits TopicPartition A again
●​ At 10:20AM, ReadFromKafkaDoFn starts to process resumed TopicPartition A but at the

same time ReadFromKafkaDoFn is also processing the new emitted TopicPartitionA.

The race condition is avoidable if the pipeline author configures the
WatchKafkaTopicPartitionDoFn with reasonable timer duration and is careful about the
remoral/stop-addiction cases.

Implementation
KafkaIO Removal/Stop Support: https://github.com/apache/beam/pull/13710
KafkaIO Dynamic Read Support: https://github.com/apache/beam/pull/13750

https://github.com/apache/beam/pull/13710
https://github.com/apache/beam/pull/13750

	KafkaIO Dynamic Read
	Problem Summary
	Proposed Solution
	WatchKafkaTopicPartitionDoFn Design
	KafkaIO API Exposure and X-Lang Support
	Race Condition Discussion
	Implementation

