Math 9	Date:	N	ame:		
3.7 Polynomials – Division By a	Constant			Pg 142-145	
Reminder- Polynomial = an exp	ression that is				
<u>Dividing</u> = splitting into equal groups.					
Example: Draw	We are splitting 6 of so	omething into 3 groups of			
Part 1: How would we solve di	vision with a polynomial	and a constant?			
Example 1	$9x \div 3$				
To divide a polynomial by a constant, we must do the opposite of multiplication					
Step 1: Arrange 9 "x" tiles in	3 rows, where each row h	as the same number of ti l	les:		
Step 2: Count the number of tiles in each row \square Each row contains x tiles. Step 3: Therefore $9x \div 3 = $			tiles in g	Note: We could also arrange 9 x tiles in groups of 3 and count the groups!	
Example 2					
	8x² ÷2				
To divide a polynomial by a cor	stant, we must do the <u>op</u>	posite of multiplication			
Step 1:					

Step 2: Count the number of tiles in each row $\ \square$ Each row contains $\ ____$ x tiles.

Step 3: Therefore $8x \div 2 =$

Alternate method: We can also use division as a fraction to determine the quotient

$$9x \div 3$$

$$= \frac{9x}{3} = \frac{9}{3}x = \underline{\qquad}x$$

Practice Using Either Method

$$(16m) \div 2$$

$$(-6m) \div 3$$

Dividing a Binomial and a Trinomial by a Constant

Remember *Bi* = _____ *Tri* = _____

Example 3: Determine the quotient of $\frac{6x^2-9}{3}$

Method 1: Algebra Tiles

Arrange ____ x² tiles and ____ -1 tiles in 3 equal rows.

How many x² tiles in each row? _____ How many -1 tiles in each row? _____ Therefore,

Method 2: Write the quotient expression as the sum of two fractions:

$$\frac{6x^{2}-9}{3}$$

$$= \frac{6x^{2}}{3} + \frac{-9}{3}$$

$$= \frac{6}{3}x^{2} + \frac{-9}{3}$$

Simplify each fraction: $(\frac{6}{3}) x^2 + (-3) =$

Practice: $\frac{8x^2 - 4x + 6}{2}$

Ex.
$$\frac{-3m^2 + 15mn - 21n^2}{-3}$$

Either... Reverse Multiplication

OR Write as the sum of three fractions

Practice: pg 146-149 Basic -- 3a,c; 6b, 8ab Challenging: 14