Identify the roles, responsibilities, and lifecycle phases of a
typical integration project

¢ |dentify the common reasons that IT integration projects
frequently fail

e Define the IT delivery gap and describe MuleSoft's approach to
closing it

e Describe the characteristics and roles of an API-led IT delivery
model that emphasizes both production and consumption

¢ Describe the common delivery methodologies for integration
projects

¢ |dentify key DevOps practices and tools for building, testing,
deploying, and delivering integration solutions

+ |dentify and describe the steps of the design, implement, and
management stages of MuleSoft's recommended product-centric
API lifecycle

e Describe the roles and responsibilities within a typical MuleSoft
integration project team

1. Identify the roles, responsibilities, and lifecycle phases of a typical integration project
1.1. MuleSoft Catalyst Playbooks

1.1.1.Discover the MuleSoft IT Operating Model

Demands on IT

IT delivery capacity

| Time
Today

|_
= New IT
§ — operating
= Consumption and model
£ innovation
[
[a

IT delivery

capacity
Enablement and assets
Time I

Business

outcomes

Customer
success

Technology Organization

delivery enablement

® Business outcomes: Define clear outcomes and KPIs with stakeholder alignment.

https://trailhead.salesforce.com/content/learn/modules/mulesoft-catalyst-playbooks?trailmix_creator_id=mulesoft-trailhead&trailmix_slug=mulesoft-certified-integration-associate-credential

Organizational enablement: Ensure organizational readiness with the Anypoint Platform.
Technology delivery: Enable platform availability and team readiness to build APIs and integrations.
https://knowledgehub.mulesoft.com

1.1.2.Learn about the MuleSoft Catalyst Delivery Methodology

Plan for success Establish the foundation Build to scale Measure impact

@ Business outcomes

Business

outcomes

9 Anypoint Platform

delivery

Center for Enablement “C4E"

Internal support

Business Outcomes playbook: Information about how to identify and measure outcomes and align
them to KPIs and stakeholders

Anypoint Platform playbook and Projects playbook: Demonstrate the path to operate MuleSoft’s
Anypoint Platform

C4E playbook: Enables organizations to maximize their results through best practices, reuse, and
self-service

Internal Support playbook: Helps customers build support models for projects involving Anypoint
Platform

Training playbook: Shows customers how to use enablement resources to provide training and
certification

Plan for success Establish the foundation Build to scale Measure impact

@ Agree on business outcomes :
and KPIs i Measure business
Business Develop the overall success Monitor and manage : Refresh the success plan outcomes
outcomes plan :

Define Anypoint platform vision

and roadmap : Refine and scale Anypoint Measure Anypoint
Design Anypoint platform Deploy Anypoint Platform g
% architecture and implementation : REGEL platfonn A
< plan
Technology — - - :
delivery TR T pﬁg‘?s and quick Define reference architecture Onboard additional project M iect KPI
Ty ! : r
Staff and onboard the project Launch initial projects and i LEAMS e g
e quick wins i Launch additional projects

Org
enablement

sreontens oveeson e Note: For details about individual steps, contact your MuleSoft Customer Success Manager

Plan for success Establish the foundation Build to scale Measure impact

@

Business outcomes
Business
outcomes

lo
I

Technology
delivery

Anypoint Platform

i

Project #3
Project #4

. . " Projects
Ongoing Delivery Capability

@ 2AiEh Center for Enablement “C4E”

Support Service
Org <

Internal support
enablement

Training Services Training

Rapid resolution to Ensure you have the right
technical issues

resources

Role-based training

e MuleSoft I
and certifications

Customer
customers success

Guided delivery process

Specialized expertise Best practices to

achieve outcomes

*C4E is a cross-functional team

*C4E ensures that assets are
- Productized and published
- Consumable
- Consumed broadly
- Fully leveraged

Center for
enablement
(C4E)

Innovation

*Success of C4E measured on
teams asset consumption

1.2. Closing the IT delivery gap

Central IT will spend its time creating reusable assets and enabling the rest of the organization to use
them.

LoB IT, developers @

Consumption

Discoverable
Reusable
assets

Feedback and
usage metrics

Self-service

Production

wi
o
=
5 u
5 EZ Y
= LoB Dev/ RRNRE
2 I SEE
® L&Y Process APIs: Agility and new value creation
= &z 0
(] oo
g g2 s & & & -
o 1]
[=]
System APIs: Decentralized access to core assets
CAE
Accessibility .
& Ownership |
SoaS apps Mainframe FTP, Files Databases Web services Legacy Systems
Figure 6. The API-led approach to connectivity
Mobile APL Experience
APIs
Shipment Process
status
Customers N7 L
Orders System

Toll ups SAP Salesf
? sl?ipments @ shipments @cusmmerﬁ ? c:s‘;jn?éﬁ ? APIs
o @ = L ==
Figure 7. Web and mobile apps built with an API-led approach

C4E: APIs, templates, common platform capabilities, like logging, caching, and error handling as well as
documentation, code samples, videos

C4E

f Self-serve assets

on the
application network

Order

status
LI
Shipment

status

Figure 8. Emergence of an Application Network

1.3. What is agile project development?
e Kanban

® Scrum

e Extreme Programming

e Feature-Driven Development

Input from End-Users, °
Customers, Team, and

Stakenolders i"«
i e Mgy

Daily Stand-Up
Meeting and Sprint
Log Update

Product Backlog

T Refinement

Product
Owner

FEATURES [5 5]

1y

2 ’H‘H‘H‘ SPRINT

i), Team TASKS 2 Weeks

5) 1)

2] ~ Team Selects a)]

S Features for (B 9

8y L~ Sprint 2) o~

9.)5 2O :; ».;O

100,),

n_)l 5 Sprint Planning D

12.) Meeting a)

52 Sprint Backlog No Changes
L In Duration or Goal
15.)

Product Backlog

m

Review

‘. Potentially Shippable

Product Increment

L

Retrospective

1.4. API lifecycle management

Welcome to the application
network

The application network is the future. It emerges from
the creation of multiple APl-enabled microservices;
connecting these microservices with a strategic API
approach results in a composable network. The network
allows the flexibility to rapidly piece together different
services for multiple functionalities an on-demand basis,

))) providing business agility and a robust platform for
innovation.

Application building blocks
are key to enabling the
application network.

The anatomy of an application
building block

~J~ An application network is composed of application
— L building blocks. These have multiple elements. and it's
J)) — + + -.))) critical to separate the concerns between each. The API
— interface, the APl implementation, and the API

. Purposefully Powerful runtime Automatic and management aspects all have their own specific, unique

[kl il ULl L i i el el lifecycles to follow. This building block should itself be
connectivity and governance

treated as a product since these characteristics are
* ¢ * common to what a good product should also have.
Aesthetics Performance Serviceability Therefore, it makes sense to treat a building block from a

and reliabili -
¥ product-centric approach.

We see this product-centric lifecycle as having three
distinct stages: design, implementation, and management.

The lifecycle of an application building
block

T\,(]_\lmeshc::ot

%
£
%

Design

\ Service
with APIs
Implementation :
APL
\ Spec

Management V

Design - DSFV, Implementation - BT, Management - DMTMS

1.4.1.Design

+ Mock up the API

.+ Identify p
requireme

| Tips | What is API
Notebook and why is it
important?

Think of API Notebook as e

the artifact to convey the Guery A7 Platform applications.
inspiration for what is

+ Modify AP design as appropriate

possible with an API,

It serves as a client
application - it calls one or
more APIs; it is therefore a
live use case in action,
where one can easily
mash up multiple APIs,
experiment, tinker and see
what can be built.

Another benefit of having
a Notebook is that it also
serves as a sort of testing
sandbox for an AP

Lo st s 41 s s
o D

“Outside-in" done right

API developers must design the “user interface” of the
API first - this is also known as the API contract. This
approach is typically known as a "design-first” approach,
and it should follow a deliberate API design lifecycle in
order to optimize for the best APl experience.

As a result, it is important to be able to do thisin a
human-readable fashion — to specify the contract in
way that humans can easily digest.

Soliciting feedback on the
APl design

At this point in the process, the API designer (i.e. the designer
of the API contract) is ready to have the API be validated and
tested by the API consumers (i.e. a client mobile app /website
developer, or another API provider in some cases).

The currency of conversation between both parties will be via
interactive tools such as the API Notebook and interactive
documentation ,to name a few. There are many other tools
thatcan be referenced from the raml.org site.

This process of validation may be brief or extended over
numerous iterations.

Repeatable design

Any well-designed API will have repeatability in it as well
as repeatability across other APIs. This can easily be
encapsulated into best practice patterns both at the
structural level of the API (nouns /resources), as well as
at the method level (verbs) . So as API developers go
about the design process, it is important to be able to
discover and share repeatable patterns.

" Exchange o

API notebook

| =
= T
- - =
=
== API
spec
(RAML)
I AP summary

API console

rignts

7] — Mocking service: — ()

-
ol hittps:fimocksve. mulesoft. comimocks/72406047-102a-4862-2e97-6] API dESIQI'Ier ;
Mocking Service -
- . WrAMEters fead .

| | = 1 m
e e e

Query parameters SO opt

1.4.2.Implementation

s Connect systematically, not in

mean by ‘systematic’

in this case? We see it an ad—hOC faShlon

as having the following
architectural patterns
::z:’l’;;’::_'ab'e oithe ‘ ! | APl implementation is a critical piece of enabling
a next generation enterprise. Enabling for dozens,
: ;C”'me,s”"' S ‘ i potentially even hundreds or thousands of APIs to be
 Routin . connected down to a backend and connected to each
+ Data mapping other will be key.
+ Connel popular
This must be done in a systematic manner (as
opposed to point-to-point code).

f the bo
+ Pattern ba
dable and base

| Tips | Best practice
patterns to be leveraged
when creating new

Put AP| design principles and

building blocks. best practices in a common
:D_Upru\arijat.aml - e s e ne FGPOSItO ry

Benefits of a best practices repository:

* Increase business agility

* Share best practices with reusable templates and
logic

* Leverage best practice patterns

+ Rapidly deploy APIs: fail fast, succeed faster

* Minimize point-to-point logic, and future proof for
stability

Testing the API
Implementation

At this point in the process, the API provider (i.e. the
e | g developer behind the APl implementation) is ready to
— e . have the 'guts’ of the API tested.

st comeage 0.0
5 -marcron -

Q MUnit is MuleSoft's testing solution, which is
Resource Coverage - Message Processors /2) incorporated into the full application building block
lifecycle.

Test automation tools are critical here, as this
integrates into the DevOps processes of continuous
delivery and deployment.

Web Service
with API

Composer

1.4.3.Management

O O B B
DOEODDODDROHH -

Continuous delivery

Ma en JUnit GitHub Jenkins

| Tips |

Policy configuration

Examples

+ Traffic management (eg,
rate limit)

+ Access Policies (eg,
OAuth2)

+ Identity policies

- Custom policies

Policy
configuration

Monitoring and «
Monitoring and Analytics Analytics N d
Examples
+ Infrastructure logs
+ Service uptime analysis
+ Client consumption data
+ Provider analytics

Orders Customers

Mobile 4P| g2y (7] ebapp APt Experience
APIs

Order status i Process

Customers [{¥] aik

a a System
Toll B e SAP o) sestorce ¥
shipments shipments [0 ciomers customers APls

sapd & ="

Consume v1 Consume v2 n
ClientB ——p Client A

Consume v2

) All new clients, and existing

>
clients after deprecation of w1

Deprecation

Embrace DevOps

Embracing modern DevOps-centric processes and tooling
is critical to reduce mean time-to-production, and this
should apply to your application building blocks as well.

Once the application building block has been assembled
and tested, deployment should be as easy as the click of
a button.

The use of a hybrid integration platform that is
lightweight, easy to install, and suitable for CICD
workflows is key. The ability to have seamless support
for dependency management, testing, version control,
and automated deployment tooling should be an
assumption.

Govern and secure all traffic

It is critical to ensure your application building blocks
are following best practices in security and
architectural governance by applying policies to them
at runtime. Monitoring all traffic is equally critical
because it just takes just one weak link to bring the
ship down.

Don't forget about the
discoverability and onramp

Imagine your company with hundreds — if not
thousands — of APIs in your expansive application
network. Imagine you're adding several new ones
every day.

Being able to appropriately publish them so the
consuming developer can find, research, and
understand them easily could make or break your
entire program.

There is no point in building something that won't ever
be found, let alone used.

Just like any product, application
building blocks change

Building blocks will change. It's a WHEN, not an IF.

So be ready for it, which requires a carefully planned
set of policies, procedures and the right platform to
seamlessly migrate clients across new versions of APIs.

Getting this migration wrong will affect your
customers. That's not a risk worth taking.

It takes a village to have an

‘ application network

API Manager / AP Admin It's key to have the ability to adapt towards the new
operating model, one where DevOps and lean
practices are adopted, as well as the creation of new
roles and responsibilities to support this new

Application Network
Architect

f

API Analyst

Where people play in the
lifecycle

APl Admin Depending on the maturity of your organization, there

may be one person handling all these responsibilities

Application Network Architect or there may be multiple people doing so. The
‘ ; important thing to note is that each stage in the

lifecycle provides specific value, which ensures
APl Admin

¢ ' » application building blocks provide desired business

o outcomes.

«— | —

API Analyst ’

Integration Dev

APl Manager

M08 apeesE

- _p

API Analytics _Visualizer
EEITm

- o - an o

Web Service
with APT

-

 API Manager

't
|

Discoverable

Exchange
o @ ®
Feedback and
@ @®

usage metrics

F—3

Self-service

Production

Consumption

e Assus

Reusable

assets

Anypoint
Studio

1.5. DevOps Resources

e Collaboration between IT operations and Development teams

e Continuous Integration (Cl): Integrating code into a shared control repository regularly,
preferably daily.

e Continuous Delivery and Deployment (CD): Delivering and deploying changes and fixes daily in a
controlled, rapid manner.
Automated Testing: Testing deployments and deliveries in a continuous, automated fashion.
Active Monitoring: Conducting “health-checks” to ensure platforms, applications, and solutions
are running appropriately.

©

Source Version Infrastructure Configuration

Code Control as Code Pravissaning Management
CODE :
Development o Virtualization
v
= D Ops 2
2 Dev ps :
@ =
Automation i - . Containerization
TEST MONITOR
Continuous Integration/
Quality Continuous Delivery or g Frepe s
Control Deployment (CI/CD) sl diona Logging

Publish

. Pull I 1 I
Azure Artifacts
Artifacts Artifacts ‘

? Trigger Build f Trigger Release f App Service
6,9 _ >

Azure BEPOS Azure Build Azure Release Dev
(Git) Pipeline (Cl) Pipeline (CD) @
Push Code Build Job Dev Stage
____________ Web App
r’ \I If 777777777777 \|
! Get Source ! ! Deploy to Dev '
N ; 777777 7/ N 7/
Visual Studio, Visual T Y QA
Studio Code { Install Tools i Approvals &
N J

@

,,,,,,,,,,, Gates
l v
I]

QA Stage Web App

) 1
iiiiiiiiiii I 1
. /_____}_ _____ . | DeploytoQA !
I 1 N 7/

! Run Tests [

) 1
- Yoo v ’ Prod
P . N Approvals &
Developer i Package Artifacts i s Gates @
| 1
N /
Prod Stage
Backlog & ,——————1— ————— N e Web App
N
Work Items ! Publish Artifacts | Deploy to Staging ! ;
i | | 1 Staging Slot
N / X slot)2 N R ecoct ol

TN
@
<
a
w
S
f =
=1
o
=]

N

N
-
v \ \ \

:/Swap Staging and\:
N Prod Slots)

Azure Boards

Production Slot

1.6. Learning Paths

Developer: You turn business requirements into code, conduct unit testing, as well as deploy,
monitor, and troubleshoot integrations and APIs. You write software to solve problems and want to
be empowered to go fast and get stuff done easily.

Operations: You are an IT professional, focusing on deploying, managing, capacity planning,
monitoring, and/or troubleshooting integrations, APIs, or both. You care about automating and
streamlining the integration and deployment processes.

Integration Architect: You make project-level design decisions and are the bridge between solutions
or enterprise architect managers and developers. You care about architectural repeatability and
ensure new projects are delivered according to standards.

Platform Architect: You are in charge of cross-project design decisions — always keeping the big
picture in mind — and are building towards an application network. You care about visibility across
systems and clouds and focus on identifying and addressing issues before they impact the business.

Recognize and interpret essential integration concepts and
terminology used by MuleSoft architects and developers

Distinguish between Infrastructure as a Service (laaS), Platform
as a Service (PaaS), and Software as a Service (SaaS)

Identify the types of virtualization, computing, and storage
infrastructure required by enterprise systems and describe the
principles of system scalability

Classify and describe common networking protocols used in
system communication

Recognize the differences between common data formats (e.g.,
XML, YAML, and JSON) used in transformations and
configuration files

Define and describe the core concepts of APl and enterprise
system security

Identify and describe the HTTP components that enable RESTful
web services

Define and correctly use the terms API implementation, API
proxy, APl interface, API client/consumer, and APl invocation

Identify and classify RESTful, SOAP, AsyncAPI, and GraphQL
APls

2. Recognize and interpret essential integration concepts and terminology used by MuleSoft architects

and developers
2.1. About the Cloud
e Benefits:

o On-demand resources and rapid elasticity

o Broad network access
o Resource pooling

Cloud Service/Offerings

Compute

Storage

Databases

Migration

Software-defined
networking

Public key infrastructure
(PKI)

Key management service
(KMS)

Secrets management

Cloud Computing Model

Infrastructure as a Service
(laas)

Cloud Service Providers (CSP): AWS, GCP, Azure, etc

Offerings: Compute, Storage, Databases, etc

Hosting: Private, Public, Hybrid, Multi-cloud

Computing Model: laaS, PaaS, Saas, iPaaS

Scalability: Horizontal, Vertical, Diagonal

Network Security: CIA - confidentiality, integrity, and availability

Description

Using servers/serverless resources to support workloads and provide bandwidth
that can be easily scaled, allowing you to build, deploy, and manage applications
efficiently.

Storing data online so that it can be accessed from multiple distributed and
connected resources, allowing easy accessibility, increased reliability, and quick
deployment of applications.

Software development is moving to the cloud, and databases are no exception.
Performing transactions, searching, analyzing, indexing, querying, reading, and
writing data are just some of the things you can do with databases in the cloud.

Moving applications and data from on-premise hosting to the cloud, including
providing backup and restoration services.

Using a network architecture approach that enables the network to be
intelligently and centrally controll ing softwar lications. This provides
admins the ability to dynamically adjust network-wide traffic flow to meet
changing needs.

Making use of a set of roles, policies, hardware, software, and procedures
needed to create, manage, distribute, use, store, and revoke digital certificates
and manage public-key encryption.

Employing a service that makes it easy for you to create and manage
cryptographic keys and control their use across a wide range of services in your
applications.

Operating tools for managing digital authentication credentials (secrets) including
passwords, keys, and tokens for use in applications, services, privileged accounts,
and other sensitive parts of the IT ecosystem.

Description

laas lets customers run virtualized applications on a rented infrastructure instead
of their own hardware. An example is virtual machines, which use software
instead of a physical computer to allow you to operate multiple operating
systems at the same time.

Cloud Computing Model Description

Platform as a Service Sitting between laaS and Software as a Service (SaaS) in terms of functionality

(PaaS) and responsibility is PaaS. This includes services where the cloud provider
manages much more of the underlying infrastructure, such as operating system
patching, and abstracts away a lot of the work for users, who in this case acquire
a stable environment to run containers. PaaS is becoming increasingly prevalent.

Software as a Service Some cloud providers offer up the infrastructure to run applications with

(SaaS) managed services, like databases that a customer does not need to patch and
maintain, or even complete application environments themselves. This is known
as Saas. If you’ve ever used Gmail, or something like it, then you’ve used SaaS.

Infrastructure Platform Software
as a Service as a Service as a Service

o
7
o
=
@
3
)
@
wn

Applications Applications Applications Applications

Data Data Data Data

Runtime Runtime Runtime Runtime

Middleware Middleware Middleware Middleware

0/S 0/S 0/S 0/s

Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers

Storage Storage Storage Storage

Networking Networking Networking Networking

You Manage Other Manages

2.2. iPaaS: Integration for the Cloud
e integration Platform as a Service
e CloudHub Anypoint Platform

e End-to-end solution

2.3. What does scalability in cloud computing mean?
e \Vertical scale or scale up

=]
{ - Increase the

compute andlor
= memaory
| capacity of the
server

8&%_,

Users

e Horizontal scale or scale out

Add more servers
to the server pool

e Diagonal scaling

Add more servers
to the server pool

rI

Increase the compute and/or
memory capacity of the server

e Benefits:
0 auto-scaling
o only pay for resources being used and for the duration it is being used
o provision new DEV, TEST, and QA instances by simply replicating the existing instance

o advanced deployment techniques
* big bang (recreate/rebuild)
e rebuild the full server stack with downtime
» rolling update (incremental updates)
e remove and add servers in the stack in a serial fashion with no
downtime
* blue/green
e build a new server in the stack, test, and repoint the main server to a
new server with no downtime

x'f?Eﬁ
'

Green Blue
(Old) (New)

* canary
e blue/green in the production environment

= a/btesting
e |atest features only to a set of users in the production environment

&3

= shadow

2.4. Network Security

® Public Network: Public Wi-Fi

® Private Network: Home/Office Wi-Fi
o Encryption

= Encoded with Hypertext Transfer Protocol Secure (HTTPS)

o Authentication

= Username, Password, Personal Identification Number (PIN), Multi-factor

Authentication (MFA)
o CIA breach:

= Confidentiality: Stealing the data

= Integrity: Change the Procedure

= Availability: Locking the data

Category
Confidentiality

A cybercriminal gains access to the Point of Sale (POS)
devices of a major retailer, and steals customer's private
credit card information.

A hacker guesses a user’s password from their social media
profile, and uses it to access their photos in the cloud.

Integrity

A hacker defaces a corporation’s website with a picture of a
pirate flag.

A cyberwarrior accesses a government document that
contains instructions on how to properly secure a nuclear
reactor, and changes the instructions in the document.

Availability

A ransomware attack uses malware to encrypt the users
data, making it inaccessible, and demands the user pay a
sum of money to the hacker to recover the data.

A Denial of Service attack takes the government’s
healthcare system offline, making it impossible for
legitimate users to access the site to enroll in a healthcare

2.5. API Basics
2.5.1.Make APIs for You and Me
Application Programming Interface
An APl is the machine equivalent to a User Interface
Common usage of APIs
o Ordering groceries for your human
o Displaying restaurant reviews based on your location

Send Request

A J

Return Response

Client Server

« An API is an Application Programming Interface

« It provides the info for how to communicate with a software
component, defining the
- Operations (what to call)
- Inputs (what to send with a call)
- Outputs (what you get back from a call)
- Underlying data types

- It defines functionalities independent of implementations
- You can change what’s going on behind the scenes without changing how people
call it

1. An API interface definition file (API specification)
- Defines what you can call, what you send it, and what you get back

2. A web service
- The actual API implementation you can make calls to or the interface of that API
implementation

3. An API proxy
- An application that controls access to a web service, restricting access and usage
through the use of an API gateway

2.5.2.Learn the Benefits of APIs

APl endpoint: GET https:

api.fitbit.com/1/user/[user-id]/activities/date/[date].json

Abstraction: A way for applications to retrieve data without having to directly engage with the
source system's logic

HTTP CRUD Descriptions

Verbs

POST Create Submit requested data to a server for processing

GET Read Retrieve requested data from a server

PUT Update Update and replace existing data with new data being sent in the request
PATCH Update Partially updates a resource

DELETE Delete Remove the requested data from the server

https://api.fitbit.com/1/user/%5buser-id%5d/activities/date/%5bdate%5d.json

2.5.3.Put the Web in Web API

When creating APIs you are limited to one application per endpoint — False

Streaming API: A type of API that sends data to the consuming application as soon as that data is
updated or becomes available.

Web approach: GraphQL, gRPC

Web services: SOAP (XML), RESTful (HTTP)

- Different software systems often need to exchange data with each other
- Bridging protocols, platforms, programming languages, and hardware architectures

- A web service is a method of communication that allows two software
systems to exchange data over the internet

- Systems interact with the web service in a manner prescribed by some
defined rules of communication

- How one system can request data from another system, what parameters are
required, the structure of the return data, and more

- First released Formatting type Key strength

Widely used and

XML
SOAP Late 1990s established
JSON, XML, Flexible data
2000
REST and others formatting
JSON- Simplicity of
mid-2000s JSON))
RPC implementation

Protocol buffers by
gRPC 2015 default; can be used
with JSON & others also

Ability to define any
type of function

Flexible data
structuring

GraphQL 2015 JSON

Adaptable to many

i 2007 JSON or Bina
Thrlft v use cases

« SOAP web services
- Traditional, more complex type

- The communication rules are defined in an XML-based WSDL (Web Services
Description Language) file

+ RESTful web services
- Recent, simpler type
- Use the existing HTTP communication protocol

« REST stands for Representational State Transfer

- An architectural style where clients and servers exchange
representations of resources using the standard HTTP protocol

- Stateless: The server does not remember any client state
from previous requests

- Clients can cache previous responses to avoid repeated /resource1

network calls

+ Other systems interact with the web service using the |
esource2

HTTP protocol

« The HTTP request method indicates which operation
should be performed on the object identified by the
URL

- Data and resources are represented using URIs
- Resources are accessed or changed using a fixed set of operations

« (GET)/companies

« (GET)/companies?country=France

« (GET)/companies/3

« (POST)/companies with JSON/XML in HTTP body
- (DELETE)/companies/3

« (PUT)/companies/3 with JSON/XML in HTTP body

« JSON (JavaScript Object Notation)
- A lightweight data-interchange format (without a lot of extra XML markup)
- Human-readable results (usually JSON or XML)
- Supports collections and maps

[mu.learn.mulesoft.com/unitec X MuleSoft

& C | ® mu.learn.mulesoft.com/united/flights/SFO w

{"flights":
[{"code":"ER38sd", "price":400,"origin":"MUA", "destination":"SF0", "departureDate":"2015/03/20",
"planeType”:"Boeing 737","airlineName":"United", "emptySeats":0},

{"code":"ER39rk", "price":945, "origin":"MUA", "destination":"SFO", "departureDate":"2015/09/11","
planeType": "Boeing 757", "airlineName":"United", "emptySeats":54},

{"code":"ER39rj", "price":954,"origin":"MUA", "destination": "SFO", "departureDate":"2015/02/12","
planeType":"Boeing 777","airlineName":"United", "emptySeats":23}]}

- Unsecured APIs
— The API may be public and require no authentication

LUl Unauthorized

* Secured APIs
— The API may be secured and require authentication }
— You may need to provide credentials and/or a token
— Often a proxy is created to govern access to an API
— We will call and then later create an API secured by credentials
— You can also secure an API with other authentication protocols
« OAuth, SAML, JWT, and more

"error": "Invalid client id or secret”

» RESTful web services return an HTTP status code with the response

* The status code provides client feedback for the outcome of the
operation (succeeded, failed, updated)
— A good API should return status codes that align with the HTTP spec

post:
body:
application/json:
type: AmericanFlight
examples:
input: !include examples/Ameri----' iy
P FLRD Created
201:
body:
application/json:
example:
message: Flight added (but

}

"message”: "Flight added (but not really)"

Code Definition Returned by

200 OK - The request succeeded GET, DELETE,

PATCH, PUT
201 Created - A new resource or object in a collection POST
304 Not modified - Nothing was modified by the request PATCH, PUT
400 Bad request — The request could not be performed by the All

server due to bad syntax or other reason in request

401 Unauthorized - Authorization credentials are required or user All
does not have access to the resource/method they are
requesting

404 Resource not found - The URI is not recognized by the server All

500 Server error - Generic something went wrong on the server All
side

2 —Success RUD
3 —-No change C

4 — Failure U

5 —Server Error

URL Format

start of separator
Tparameters T

https//www.example.com/widgets? =blue&sort=newest
|

|
lkey lvalue

https — Schema (protocol)
www.example.com — Host
widgets — Path

? — Query and Parameters

XML vs JSON vs YAML

XML

JSON

YAML

eXtensible Markup Language
(data interchange)

<Configurations>

<Config>
<Name>Ingress</Name>

JavaScript Object Notation
(serialization format)

{

"configurations":[

{

"name": "Ingress",

YAML Ain't Markup Language
(configuration)

configurations:
- name: Ingress
value: data/input

http://www.example.com

<Value>data/input</Value> "value": "data/input" - name: Egress
</Config> }, value: data/output
{
<Config> "name": "Egress",
<Name>Egress</Name> "value": "data/output"
<Value>data/output</Value> }
</Config>]

</Configurations>

RAML vs OpenAPI vs AsyncAPI

RAML: Provides information to describe RESTful APIs, and can include any file content in its
documentation. RAML can also support the entire API lifecycle and improve API-led connectivity.
OpenAPI: A specification for designing and documenting RESTful APls. OpenAPl's goal is to keep
documentation, client libraries, and source code in sync. OpenAPI has more adoption, a richer
ecosystem, and more community support than RAML.

AsyncAPI: A specification based on Open API that describes event-driven APls. AsyncAPl's goal is to
standardize asynchronous and event-driven APIs across the industry. AsyncAPI is a solution for

message-driven architectures.

APl implementation, proxy, interface, client/consumer, invocation

APl implementation: A program that follows the API's rules

API proxy: An interface that sits between a client and an API, providing access to the API with additional
functionality such as security, caching, or rate limiting. Common types of proxies include reverse proxies,
SSL proxies, and transparent proxies.

API client: Code that calls APl invocations and processes requests

APl consumer: Creates an API client and sends API invocations to an API

Invocation API: Part of the Java Native Interface (JNI), allows non-Java code to create a Java virtual
machine, and load and use Java classes

2.6. Getting Started with Anypoint Platform — Module 1
e Refer previous sections

Recognize common integration problems, deconstruct them into
their fundamental integration use cases, and identify the
appropriate technologies to solve them

Classify and describe the characteristics of common enterprise
systems

Classify and describe the tradeoffs of legacy and modern
integration approaches

Given a complex business problem, identify the fundamental
integration use cases that can deliver an end-to-end business
solution

Describe the purpose and function of the different classes of
integration technologies

Identify the types of integration technologies that are most
suitable to realize different integration use cases and business
scenarios

Deconstruct an integration solution into its integration system
constituents

Recognize common integration problems, deconstruct them into their fundamental integration use
cases, and identify the appropriate technologies to solve them

3.1. Connect Sales Cloud to ERP with Anypoint Platform

e Enterprise Resource Planning (ERP): Inventory data

® Customer Relationship Management (CRM): Customer and Account data

e Human Capital Management (HCM): HR data

e Configure, Price, Quote (CPQ): Solution, Pricing

3.2. API-led connectivity

Anatomy of APl-led Connectivity

API-led connectivity is governed by three components:

o Interface:
Presentation of data in a governed
and secured form

o Orchestration:

Application of logic to that data, such
as transformation and enrichment

o Connectivity:
Access to secure data from physical

systems or external devices

Ownership Frequency of Changes

System Layer Central IT 6-12 months

Central IT and
Process Layer line of business IT 3 -6 months

4 -8 weeks: more
frequently for more
mature companies

Line of business IT and

Experience Layer application developers

3.3. iPaaS vs. full lifecycle APl management: Why you need both
e iPaaS

o Cloud platform
o Users can develop and deploy integration flows between the systems without installing
or managing any hardware or middleware
o Enable connectivity to cloud-based software, SaaS, on-premises, and legacy applications
e Full lifecycle APl management
o Designing, publishing, documenting, analyzing, etc
o Govern, secure, manage, etc

3.4. Top 10 integration patterns for enterprise use cases

- &2 —

APIs or Remote Procedure Massaging Bus iPaa5 Platforms File Transfer and MFTs
Invocation {Pub-Sub)

et G 7=, o
i 2

ETL Platforms Streaming Platforms Data Virtualization Tools Robotic Process
Automation (RPA) tools

#1 Aggregation of data

Businesses consolidate data from multiple sources for semantic completeness and contextualization
purposes. Within these use cases, data from multiple applications are copied into a central location for

further analysis and processing, for example, data warehouses, data lakes, or dashboards.

Integration Technology Options

<»| APIs or Remote Procedure Invocation

Source ~\

iPaas Platforms

N (£

L i [& File Transfer and MFTs

.~ Target

'\7> & B2B Transfers (EDIFACT, X.12, etc.)
Source -~ >

[P ETLPatiorms
™ Data Virtualization Tools

Some of the commaon examples of business scenarios are:

* Building a single view of customer
+ Migrating data from on-prem applications to a cloud-based data warehouse
« Consolidating sensor data and ERP data for advanced analytics on usage patterns

« Preparation of executive sales dashboards

#2 Streaming data ingestion

Most organizations have modern devices and objects that are capable of instrumenting and generating
data to reflect the current or past state of the device. This data is vital for an organization’s operations
and needs to be ingested into a platform for downstream consumption and usage. Typically, such
devices can generate data either at a slow pace (every minute or hour) or at a fast pace (sub-milli-

second).

Integration Technology Options

@ Messaging Bus (Pub-Sub)

Source (>)-(>) Target
Continuous
Streamn

E Streaming Platforms

Some of the common examples of the business scenarios are:

» Processing [oT sensor data at edge locations
» Real-time consolidation of inventory across stores
» Consolidating user click data on retailer websites

» Collecting and analyzing machine vibration data to predict failure

&

B2B Transfers
(EDIFACT, X.12, etc.)

Shared Datastore
(File-store, DB, etc.)

#3 Data sync between multiple applications

For a given piece of data, there is generally a well-defined system of record where its lifecycle is
managed. However, that data is often required within other systems to complete the business
transactions within those applications. The data changes faster in the system of record and is required
near real-time in the consuming applications. Consuming applications may further enrich or update

certain information. More often than not, these consuming systems should not act as systems of

record.
Integration Technology Options
E APIs or Remote Procedure Invocation
) @ Messaging Bus (Pub-Sub)
e _f:z,* Target G File Transfer and MFTs
(<Y
N ¢3y iPaas Platforms
mr.' Data Virtualization Tools
B Shared Datastore (File-store, DB, etc.)

Some of the commaon examples of the business scenarios are:

s Upon creation of a new customer account, syncing the account details to ERP, CRM, and Financial
applications. Updates to customer accounts can be made in the CRM applications and those

updates are sent back to the system of record.

+ Synchronizing customer data with the customer support applications so your front-line agents can

better serve your customers.

#4 Sharing data with external partners

Any given organization typically works with multiple external business partners, such as suppliers,
contractors, government agencies, etc. These business partners are organizations on their own with
different systems, processes, and applications. Data exchange between your organization and the

partner organization, however, is critical to complete business transactions.

Integration Technology Options
APls or Remote Procedure Invocation
Messaging Bus (Pub-Sub)

mm

./_“‘\
So —(5 | Target File Transfer and MFTs
\"_

B2B Transfers (EDIFACT, X.12, etc.)

L N WE

Shared Datastore (File-store, DB, etc.)

Some of the common examples of the business scenarios are:

e Sharing purchase orders with your suppliers
* Sharing invoices for payment purpases with your suppliers
* Sending tax data with the government

« Sharing machine’s operating parameters with the regulatory organization

#5 Broadcasting events

Events occur all the time within an organization. New hires, machine shutdowns or failures, expense
approvals, payment issues, website traffic exceeding a certain threshold - all of these are classic
examples of meaningful events that have downstream impacts and demand further actions.

Identifying, capturing, and notifying these events to downstream consumers are critical aspects in these

Lise Cases.
T gy Op
~y Target [2] APIs or Remote Procedure Invocation
PN _
SeTes iy @ Messaging Bus (Pub-Sub)
A
N - @ iPaaS Platforms
[} Streaming Platforms

Some of the common examples of the business scenarios are:

* Tracking a consignment’s shipment status

« Sending notifications for customer order fulfillment status

Tracking the inventory updates in real-time

Experiencing a retailer website crash after a surge in user clicks

#6 Bulk or batch data movement

There is an ever-growing need to see data as quickly as possible, however, there are valid scenarios
where delays in presenting information is acceptable or presenting information in real-time is not
required. Such scenarios optimize and provide better utilization of the resources usage in a way that

constant or online availability of processing resources is not required.

Integration Technology Options
%%%% ¢2Y APIs or Remote Procedure Invocation
Source {;‘\.} G & Messaging Bus (Pub-Sub)
i [eTLPiattorms

Some of the commeon examples of the business scenarios are:

¢ One-time migration of customer accounts from an old CRM to Salesforce
¢ Periodic migration of invoices from ERP to payment systems
« Nightly reconciliation and analysis of financial transactions from multiple applications

¢ Daily summarization of shipping and receiving transactions

#7 Synchronized data transfers or process triggers

Synchronous data transfers are scenarios where the receiver of the information makes a request for
data transfer and waits until the sender has transmitted the requested information. During the time the
data is not received, any further processing at the receiver is suspended. Such scenarios are valid when
there are strong dependencies between the requested data and subsequent transactions at the

receiver.

Integration Technology Options

Response

ra"
N/

(<)

Request 'é Robetic Process Automation (RPA) Tools

APIs or Remote Procedure Invocation

Source Target ¢2Y iPaa$ Platforms

Some of the common examples of the business scenarios are:

Retrieving last year's sales report from the CRM system

Searching for a customer’s invoice within the ERP system

Checking a prepaid balance for your cell phone SIM card

Retrieving a patient’s prescription record before searching for medicine availability

#8 Asynchronous (fire and forget) data transfer or process triggers

Asynchronous data transfer or process triggers are scenarios where the data is sent to a target without
an expectation of acknowledgment or confirmation back to the source for success or failure of transfer
or process trigger. The source continues subsequent activities are sending the data or command to

trigger the process. The consumers of source applications do not experience any wait time as a result of

the data transfer of processing.

Integration Technology Options
APls or Remote Procedure Invocation
@ Messaging Bus (Pub-Sub)
Source 4.> - Target [(3 streaming Platforms

@ iPaasS Platforms

‘i Robotic Process Automation (RPA) Tools

Some of the common examples of the business scenarios are:

¢ Sending promotional texts or emails to prospective customers
« Triggering an expense approval workflow

e Processing of your insurance claim receipts

#9 Orchestration and data processing

Significant semantic clarity is built when data from multiple sources are brought together and
orchestrated. Orchestration of data provides additional context or clarity. In this use case, a layer of
abstraction is developed between the source and target where deeper business logic is embedded.

Often the orchestration use cases are heavily tied and specific to the underlying business domains.

Integration Technology Options

Source ¢2Y iPaa$ Platforms

\ T
)% — Target ’il Robotic Process Automation (RPA) Tools

Source

Some of the common examples of the business scenarios are:

s Activating a customer account - credit check, background verification, employment validation,
etc.

s Processing a new hire employee - salary account setup, IT assets delivery, work locations, etc.

#10 User interface integration and mashups

Integration is often thought of as the transfer of data among applications for machine-level
consumption, as described in previous use cases, however, presentation of information in a
consolidated format for human consumption is a widely known use case. Information is aggregated in a

central location for human consumption.

Integration Technology Options
Source y ,_E;]__\ APls or Remote Procedure Invocation
\ e

Some of the common examples of the business scenarios are:

+ Portals, Intranets
« Public Websites
* Mobile apps

Explain the common technical complexities and patterns that are
central in integration development

e Describe the differences between the request-reply, one-way,
multicast, batch, and stream interaction patterns

e Explain the differences between the aggregation, orchestration,
and choreography composition patterns

¢ Describe the purpose of an API specification and the benefits of
following a design-first approach to API development

e Describe and compare observability approaches for integration
solutions including logs, metrics, and tracing

e Describe the differences between cloud, hybrid, and on-premise
deployment architectures

e Describe the differences and tradeoffs between monolithic and
microservices application architectures

e Describe the difference between a service mesh and an APl
gateway

4.

Explain the common technical complexities and patterns that are central in integration development
4.1. A primitive look at digital integration

e integration system primitives

Primitive

Definition

Examples

Compon

ent

Software-enabled element of the
system to be integrated

e Back-end application that exposes its functionality as a web API
e Microservice publishing events to a broker
* Mobile app consuming back-end GraphQL data

Interaction

Message-based communication
between components

. Mobile banking app retrieving recent credit card transactions
from account system

. Distributor placing EDI crder to supplier

e Investment application producing stock price change event,
consumed by multiple

Message Encoded data sent from one . HTTP GET with customer identifier encoded as a query
component to another as part of parameter
an interaction . New customer event serialized in Avro and sent over Kafka
Interface Access method for a component e Web API with OpenAPI specification

that specifies the protocol and
data rules for messages

* Web service with WSDL
o GraphQL API with schema

Encoded data

Ex.: HTTP GET with g=?

Message

I

A

B

Component

Interaction
_— Component
Message-based communication
Software-enabled element
Interface Ex.: web app

Access method
Ex.: Open API Spec,
WSDL, Schema, etc

e nteraction type primitives

Primitive Definition Examples
Query Interaction where a component asks e HTTP GET of store hours
another component to provide specific |e SOAP call to getAccountBalance
information s GraphQL query
Command | Interaction where a component asks s HTTP POST to add a new store locaticn
another component to complete a s SOAP call to transferFunds
state-changing task e GraphQL mutation
Event Interaction where a component s (Callback on HTTP webhook to notify that a particular store
communicates the result of a location just opened
state-changing task to one or more e Event published to Kafka broker that a high value customer just
other components signed on to online banking
s GraphQL subscription
Ask for information
Ex.: HTTP GET with g=?
Query
C Command C Event
omponent omponent Communicate the result of

Ex.: HTTP POST

Ask for state-changing task

state-changing task
Ex.: Kafka broker

C

Component

e interaction pattern primitives

Primitive Definition Examples

Request-reply Component sends a message to another component e AnyHTTP query
and expects a response message, either immediatelyor | e Update to customer record with
delayed returned acknowledgment via GraphQL

One_way Component sends a message to another component e Cancelled point-of-sale purchase (store
without expecting a response and forward)

Multicast Component sends a single message to multiple . Updated price for product (over JMS)
interested components

Batch Component sends a bounded collection of messagesto |e Daily transaction file sent from online
another component payments application to settlement and

reconciliation batch process

Stream Component sends an unbounded series of messagesto |e Audit of user actions during a signed on

another component session to a web application (Kafka)

Without expecting a response

One-way

Ex.: HTTP query
Request-reply

A

Single to Multi
Multicast

P
Bounded collection of messages
Batch
Unbounded series of messages
Stream
,,,,,,,,,,,,,,,,,,,,,,,,,,, »l
Component Compaonent
e interaction composition primitives
Primitive Definition Examples
Aggregation Stateless composition, fan out and fan in . Mobile app back-end aggregates
multiple back-end calls to format single
“customer profile” response
Orchestration Composition coordinated by a central component * Address change process that includes
data validation and propagation to
multiple product applications
Choreography Reactive composition based on event triggers e Order is received, inventory service
notified, fulfillment process triggered

® Aggregation
0 __stateless composition

o__fan-in, fan-out

o0 receives asingle query request, executes multiple queries to other components,
assembles their responses to formulate a reply
® Orchestration
o stateful coordination of interactions by a central component
o flow may change depending on the intermediate results
e Choreography

o reactive coordination of component actions based on interaction triggers and resulting
events

4.2. Choosing a great API spec saves time and hassle
e Spec-Driven Development

e REST API you build will be long-term focused

e RESTful APl Modeling Language (RAML)

4.3. Everything you need to know about observability in Anypoint Platform

e logging, analytics, monitoring, troubleshooting, and measurement

e System = platform, runtimes, applications

® Provides real-time pulse of a system

e “you can’t improve, what you can’t measure,
“you can’t solve unless you troubleshoot”

” u

you can’t analyze if you can’t collect data,” and

Pillar #1: Logs
e messages logged by an application, system, or OS when an event occurs
o Ex.:transaction processing, start or stop of the application, user audit

Pillar #2: Metrics
® measurements
e |ogged periodically
o Ex.: Sensor sending temperature reading

Pillar #3: Traces
e complete transaction journey from beginning to end

Control Plane

s Design Center 7
= % Audit log

% Core usage
Exchange
4 Container/POD usage
= API Manager < Platform disk space

Runtime Manager

Figure 1: Observables in Anypoint Control Plane

. . \
Runtime Plane - Mule Runtime |

[

[

g Memory usage I

[

% CPU usage :

) [

Mule Runtime oo Disk space I
[

e Aoce Do« I

& Agent logs I

. [

o WNtime logs I

[

. S [noc [

X 0S logs "

1

Figure 2: Observables in Anypoint Mule runtime

Runtime Plane - APl and Apps

&

% API analytics

% Policy violations

@ API % Tracing
< Application logs
% ALC data
@ Applications
% Application health
% Response time

% Flow monitoring

T T T T —

Figure 3: Observables in Anypoint runtime APIs and applications

Private Cloud

Customer’s own Anypoint privat
cloud deployed in their d:
Observed Component | Metric/log Applicable to this deployment option?
Cloudhub | Hybrid |Onprem(PCE)

API & Application Application logs

API Analytics v

Policy vialations

Tracing

Application lifecycle

Application health

Response time

Flow monitoring
Runtime Memory

CPU

Disk space NA

Agent logs NA

Runtime logs

0S logs NA
Platform Control Plane Audit logs

Core usage NA NA

POD/Container logs NA NA

Disk space NA NA

Feature applicable for this deployment model and is offered OOTB by Mulesoft
Feature applicable for this deployment model but may need a 3rd party tool for easy access
Feature not applicable for this deployment model

<

4.4. Understand the Different Cloud Computing Deployment Models

1. Cloud
EAWSCloud
: Applications iCompanyF’orlalsf
' P — '
o =
! File Sharing E Storage
A
Internet
Zesln
Users
2. Hybrid

On-premises business systems

Private Cloud

@ AWS Cloud

! Virtual Company Portals
private | = '
| network :
i Storage
Corporate Internet
network

00

llsers

3. On-premises or private cloud

On-premises business systems

O

Private Cloud

iCompany Portals

il

Users

4.5. Service mesh together with APl management
® Service Mesh is an architectural pattern for microservices deployments
e Solves security and governance challenges

@ o o mon

O
<
@)
<
o
¢
®

e o NN

ov ov SN (NN | |

Monolith Microservices
Large blocks of code Small services composing an application

» Brittle: Hard to change large » Agile: Easier to change smaller

blocks of code blocks of code
» Bottleneck: Have to redeploy application » Nimble: Services operate independent of

after all code changes one another
» Rigid: Single language, requires freguent » Flexible: Polyglot programming, teams can

comrmunication across teams work independently according to

their strength

Kubernetes cluster

m

&) sidecar proxy {i ¢ sidecar proxy ; b)) sidecar prowy

@ Senvice A " Service B ,‘,,i Service C

Figure 3: The sidecar pattern for microservices deployments.

e Common policies: circuit breakers, timeout implementation, load balancing, service discovery,
and security (transport layer security and mutual authentication)

What role does API

External customers management play?

> APl gateways protecting
north-south traffic out of
the Kubernetes cluster

APl management solution

Developer portals API gateways AP security
1
1

__ > APl security applied on the
R gateway to identify malicious
clients and payloads

> Developer portals to make
services reusable to

: = ey) Sidecarprovy €8

accelerate future projects

1 i @ Sendce
' !
i
H 4 - ¢ &
i
d D) Sidecarprowy 4—-=--—-3 @) Sdecarprowy 4-—---—-3 @) Sidecarpray -3 o) Sidecarproxy
!
i
& s & senicec & serviced A ek

! Kubernetes cluster

Figure 4: The role of APl management.

Internal and @ D . @ (:.ff,,;‘,
external APls -

Anypoint Platform

APl-led conne for mic

| | D Kub tes cluste
@ Mule applications ! 1 . ernetes cluster

L e TR @
e 0O | |
L i W A @ -

WiLle Qp e WL appr
) v
& sidecar ProKy --=-—--- » & sidecar prowy

audHub Rurdime Fabric

Figure 9: Extend the benefits of an application network with Anypoint Service Mesh,

Describe the components and benefits of Anypoint Platform for
system integration

Identify the primary components of Anypoint Platform and their
benefits for system integration

Identify and describe the common characteristics of popular
Anypoint Connectors for connecting to software applications,
databases, and protocols

Identify the components and describe the benefits of the Anypoint
Platform runtime planes and control planes

Describe the MuleSoft-hosted and customer-hosted deployment
options for Anypoint Platform

Describe the uses and benefits of the Anypoint Platform
development tools and languages for integration developers and
DevOps teams

Describe and classify the types of reusable assets in Anypoint
Exchange that form the building blocks of integration solutions

5. Describe the components and benefits of Anypoint Platform for system integration
5.1. API Lifecycle Management with Anypoint Platform

5.1.1.Explore the Application Network
e API-led connectivity

o Clear contract between systems

Reusability

o Discoverability

o Visibility and security

o Availability and resiliency
APIl-led A methodical way to connect applications, data, and devices through reusable
Connectivity and purposeful APIs; the opposite of point-to-point integration.
Application A network of applications, data, and devices connected by reusable APls, each
Network built with the principles of API-led connectivity.

Anypoint Platform

MuleSoft's platform that provides many tools to design, build, deploy, and
operate an application network.

Integration
Trailblazer

A person within the ranks of the company who champions the idea of API-led
connectivity as an opportunity to revolutionize how business is done (and lead
in the new, digital economy).

Citizen Integrators

Typically a line of business manager, Salesforce administrator, or other
non-technical user enabled by user friendly citizen integration tools,

like MuleSoft Composer, to build new innovative integrations and customer
experiences with clicks instead of code.

® @
=

Databases FTP, Files

ERR IR

Innovation and digital products EREE

APIs
- --
Quickly orchestrate new processes PE;F:S
- - - - = =
Expose data from core assets Sﬁﬁ’m

g ¢ 9 9 & 4
[=] i??-b ooy @ RN

Web services Saas On p'or:- Social IaT Pariners
Apps Apps Apps

https://trailhead.salesforce.com/content/learn/modules/mulesoft-basics?trailmix_creator_id=mulesoft-trailhead&trailmix_slug=mulesoft-certified-integration-associate-credential
http://sfdc.co/bIfskV

5.1.2.Integrate Your Systems

Tightly Coupled Integration API-Led Connectivity
Design for short-term needs Design for future flexibility
Point-to-point integrations 3-layered API architecture
Scale by repetitive effort Scale by reuse

Spaghetti code Application network

5.2. Getting Started with Anypoint Platform - Module 2
5.2.1.Introducing Anypoint Platform

Anypoint Platform Application network

O] &

Anypoint Design Center Anypoint Management Center

Anypoint Exchange

< Runtime services
~

{3 Hybrid cloud

D0 @ @

Admin, Ops, Ad-hoc
DevOps integrators

Specialists App devs

7 Rapid ‘_ Collaboration |}€f Visibility

(> development and self-service and Control

Design Center Exchange Management Center

Lean runtime
Mule

On-premises & Hybrid Hosted by Cloud service providers
Private Cloud MuleSoft

ﬂ
®

Anypoint Design Center

e Anypoint Management Center N

cloudh%ob%

=D ﬁ’@v

On-prem Private cloud fully managed iPaa$S

® & © ® @
IoT

Partners

BE

r

Databases FTP, Files Web services SaaS Apps On-prem Apps Social Apps

@
LE)

5.2.2.Achieving success with Anypoint Platform
MuelSoft Catalyst

Business outcomes
Define outcomes

with clear KPIs
and align
https://knowledgehub.mulesoft.com | ’ Stakehmgers.

Get up and » .
running with . z Ensure your
Anypoint Platform N y

organization is ready
and start building Customer Success to use and adopt the
APIs and B s o ioidl el 5 2 5 8 BB @@ﬁ Anypoint Platform
integrations

Technology delivery Organization enablement

5.2.3.Introducing the components of Anypoint Platform

" Exchange

API development cycle: API specification

=
®
0 == API notebook
= API portal e
- - =
API
spec
(RAML)
| s
API console
e ®
Mocking Service

API designer

Query parameters

Web Service
with API
API

spec
(RAML)

Anypoint £
Studio
e
B [} (-] d
a- G >

Composer

API development cycle: API management

-

Visualizer
o
Ee)
%
d

API Analytics
== NN NAN|
= (o]

Web service RN

with API i 5 e e iz
‘WM"'" " o
||III|I||| | |I | :

: API Manager API Manager

Consumption

Discoverable
-]

ErcTan o Reusable

assets

Feedback and
usage metrics

Anypoint
Studio

Self-service

Production

Anypoint Exchange

* A library of assets

« The central repository that is critical to the success of building an
application network

* Provides a place where assets can be published for discovery and reuse
* Discovery is supported by strong search capabilities

What does (and should) Exchange contain?

+ MuleSoft-provided public assets available in all accounts Alwees

tO a“ LISEI’S Connectors
- You can work with MuleSoft to get APIs and connectors certified Templates
and added
Examples
- Private content only available to people in your org Policles
- Assets added by anyone in your org are added to your private API Groups (X0
Exchange

REST APIs

SOAP APIs

- Your organization should populate it to contain
everything you need to build your integration projects DataWeave Libraries (8
- Including APIs, connectors, diagrams, videos, links, and more AsyncAPls ([EED

HTTP APIs

REST APIs and API portals in Anypoint Exchange

- When a REST API is added to Exchange, an API portal is
automatically created for it

« An API portal has
- Auto-generated API documentation
- An API console for consuming and testing APIs

- An automatically generated API endpoint that uses a mocking service to
allow the API to be tested without having to implement it

« API portals can be shared with both internal and external users

- In the last module, you used a public API portal created from
Anypoint Exchange for a private organization (Muletraining)

REST connectors in Anypoint Exchange

« When a RAML 1.0 API specification is added to Exchange, a
connector is automatically created for it
- The connector can be used in Mule applications to make calls to that API
- REST Connect is the name of the technology that performs this conversion

Exchange

Assets provided by MuleSoft

| All assets

Connectors Vv Q search =
Training (master) —

I Srasicadtyfhviesd 20 results. [Save this search

Shared with me

My applications
Public portal 9 O @ @

SAP S/4HANA OData Connector - Mule Salesforce Connector - Mule 4 Amazon 53 Connector - Mule 4

Using Exchange: Success of C4E in action

LoB rﬂﬂ @ Project 1

Is there an Should we
asset? create one?
Exchange

Central @
a ﬁ Tem
Templates

O |

Innovation
teams

i
i

Project 2

5.2.4.Building integration applications and APIs with Design Center

Design Center applications

Application Purpose In this course Additional courses

API Web app for designing, Module 3 « Anypoint Platform:

Designer documenting, and mocking APIs API Design

Anypoint Desktop IDE for implementing Module 4 « Anypoint Platform

Studio APIs and building integration Development: Fundamentals
applications « Production-Ready

Development Practices
* Production-Ready
Integrations

Settings + Create new

New Project from scratch

New API Specification

o5 /686195782 409-4C12-b215-520025630813/
/128.1/Ame ricanF LightDa taType. ranl
New Fragment 6
nipp that 4
&
altiple :
i
1
New Mule App 1z t:
K 13 type: string
ule integ flow 1 =
15
1 nauthorized, The client_id or client_secret are not valid or the client
New AsyncAPI
2
esign an Async 18 scriprion: The client used all of its request quota for the current period.

1
New Project from existing source
Template Types and Traits Root Parameters

Import from File | New documentation | annotatienTypes baselri | baseuriparameters

o R . . | resourceTypes mediaType
fror T e e protocols

version

Sync from existing GitHub Repo Docs Security Others

r Vew C OF fragmer m.al | description | securedsy | uses

g GitHub repost | documentation | securityschemes

Creating Mule applications with Anypoint Studio

* Mule applications can be created using Anypoint Studio
- Studio creates XML code visually by adding components and processors to flows
* The XML can also be manually edited or created
- You can use connectors and other assets from Exchange
- Other tools can be used to write code (primarily XML) to create applications

» Under the hood, Mule applications are Java applications using Spring

5.2.5.Introducing Mule Runtime

Mule is the runtime engine of Anypoint Platform

* A lightweight integration and automation platform that allows
developers to connect apps together quickly and easily, enabling them
to exchange data

- Acts as a transit system for carrying data between apps (the Mule)
- Can connect all systems including web services, JMS, JDBC, HTTP, & more

» Decouples point-to-point integrations by having all (non-Mule) apps
talk to a Mule runtime instead of directly to each other

» Enforces policies for API governance

- Can be deployed anywhere, can integrate and orchestrate events in
real time or in batch, and has universal connectivity

A & &
On-premises & Hybrid Hosted by
Private Cloud MuleSoft

(CloudHub)

Mule applications are designed to run on Mule

* Mule applications are created by integration developers to tie together
various subsystems

» These applications are deployed to a Mule Runtime which enables
them to consume inbound data in a predefined Mule message format

» The applications transform and route Mule messages in paths called
flows and in stages called components or processors

» Mule finally delivers the transformed data to a recipient or destination

» Mule applications can be deployed to anywhere a Mule Runtime is
hosted

- Mule runtimes can be MuleSoft-hosted in the cloud (CloudHub), private-hosted in
the cloud, on-premise, or a hybrid

5.3. Introduction to Anypoint Connectors
e Inbound endpoint, Message processor, Outbound endpoint
Software Applications: AP, ERP, CRM, etc

e Databases: HDFS, MongoDB, etc
e Protocols: LDAP, WebSocket, etc
e Support Categories: Select connectors, Premium connectors, Mulesoft certified connectors

5.4.

Design

Anypoint Design Center

On-premises
& private doud

=

Hosted
by MuleSoft

Deployment options of Anypoint Connectors

@

Engage

Anypoint Exchange

Run
Mule

Scale

Runtime services

Manage

Cloud service providers

Anypoint Managernent Center

Plane CloudHub Hybrid Runtime Private Cloud | Pivotal Cloud
Fabric (RTF) Edition (PCE) Foundry (PCF)
Control MuleSoft MuleSoft MuleSoft On-premise or | On-premise or
Cloud Cloud Cloud Private Cloud Private Cloud
Runtime MuleSoft On-premise or | On-premise or | On-premise or | On-premise or
Cloud Private Cloud Private Cloud Private Cloud Private Cloud
(K8s or Bare
metal)

e On-premise or Private Cloud

o Single-tenant

o PCE - On-premise or private cloud (AWS)
e MuleSoft cloud:

o Multi-tenant

o USorEU region cloud

o Government cloud

5.5. APIs and DevOps

Lifecycle stage Stage activities Anypoint Platform
components
Design Create an APl specification APl designer
Define data types Anypoint Exchange
Add security patterns
Simulate Describe examples Author Wocking Service
error messages NOTE: With a mock service,
frantend developers can begin
L'-&i['.l'l; Lhe user experience bE[L}'E‘
the APl is implermented, allowing
parallal development and reducing
lirme ta market
Collect feedback Create on-ramp Developer Portal
Publish portal Anypoint Exchange
Validate Create runnable tests Anypoint studio
Orchestrate APl calls Anypoint Exchange
Build mport APl spec Anypoint Studio
Manage dependencies Anypoint Exchange
Compose with connectors
and templates
Static canfig analysis
Link to versicn control
system
Test Authar unit and functional MUnNit
tests - Anypoint Exchange
Define pass/fail criteria
= Deploy Deploy artifacts Anypoint CLI
= Secure Promote across Anypoint Platfarm
* Promote environments Runtime manager
Apply policies APl manager
Control access
* Qperate Measure SLAS, monitor Runtime manager
= Secure utilization, adjust Wanagement agent
* Monitor resources Anypoint Analytics
« Manage Track performance against

« Analyze

KPls

Deployment Operations

Build Runtime platform

OO OO

00O
T 00
o"e T0OOC

Mgmt agent
Jenkins 9
Ship

Image

Deploy, manage, scale

Prod
Anypoint Platform

Application building black

@ RUNtime manager
% APl man

Third-party tools
splunk>

kubernetes

ZABBIX

. elasticsearch

'. logstash

; kibana

Figure 3: Operating Anypoint Platform

5.6. Anypoint Exchange Asset Types

API Groups

A set of APIs bundled into a single asset.

API Spec Fragments

A part of an API specification that is reused to build a complete API
specification.

AsyncAPI
Specifications

An AsyncAPI specification file that specifies an event-driven API.

Connectors

Packaged connectivity to an Anypoint Platform endpoint using third-party
APIs and standard integration protocols.

Use connectors within your application’s flows to send and receive data
using a protocol or specific API. Anypoint Studio comes with many bundled
connectors, and Exchange has many more.

Custom

A description and an optional file to explain aspects of your system, to
provide instructional videos, or to describe product or organizational
documentation.

DataWeave
Libraries

Packaged modules and mappings to share and reuse across applications.

Examples

Applications that are ready to run in Anypoint Studio and demonstrate a
use case or solution.

GraphQL API

A schema definition that contains the object types and definitions that are
used to interact with the API through the GraphQL specification. GraphQL

enables you to query an API that supports this language in a much more
flexible way than REST.

HTTP APIs

A placeholder for an endpoint for use by private Exchange users who want
to manage the endpoint with APl Manager.

Instead of requesting access to multiple APls to satisfy a use case, a
developer can access the group in one step.

Policies

Configuration modules to extend the functionality of an APl and enforce
capabilities such as security.

REST APIs

RAML or OAS files that specify APIs referenced by an HTTP Request
connector to expose metadata to Anypoint Studio.

RPA Templates

RPA Activity Templates

Activity templates are reusable code within RPA to standardize the most
used activity steps and make them available to other developers in the
organization. File type is .calw.

RPA Process templates

Templates for RPA processes that can be imported into RPA Builder as
projects and are customizable before deploying to RPA bots. Process
templates are built on common patterns for RPA to build automation faster.
File type is .crpa.

Ruleset

YAML files that describe a ruleset.

SOAP APIs

A WSDL file that specifies an API.

Templates

Packaged integration patterns built on best practices to address common
use cases.

Complete the template’s use case or solution by supplying your own
information, customizing or extending the templates as needed.

Describe the components and benefits of Anypoint Platform for
APl management

|dentify the primary components of Anypoint Platform and their
benefits for APl management

|dentify how MuleSoft products realize the goals of full lifecycle
API development and Universal APl Management (UAPIM)

Explain the advantages of API-led connectivity with Anypoint
Platform over other integration and APl management approaches

Describe the components and benefits of Anypoint Platform for API management

6.1. Introducing universal APl management on Anypoint Platform

API Designer: provides a visual or code-based guided experience for designing, documenting,
and testing APls in any language (RAML, OAS, AsyncAPI)

Anypoint CLI: Command line interface

Flex Gateway: ultrafast, designed to manage and secure APIs running anywhere

API Manager: manage, govern, and secure APls

API Governance: maintain standard quality and security while developers want to avoid
overhead caused by conformance review cycles

Anypoint Exchange: marketplace of reusable, pre-built assets

APl Community Manager: create and nurture a community of developers and partners to foster
adoption of APl products

API Experience Hub: create a consolidated source of truth and a digital storefront for all your
enterprise APls fast with out of the box templates

Anypoint DataGraph: reuse multiple APIs in a single request and serve data from all your APIs to
developers instantly (GraphQL)

7. Ancillary
7.1. Designing API

Approaches to API design

Hand coding API Blueprint OpenAPI Spec

OPEN

(AP

INITIATIVE

RAML

AsyncAPI Spec

AsyncAPI RAML

= Design Center 2 MM
¥ American Flights API/master v Publish
1 #RAML 1.9 —
E Files ar 2 v title: American Flights API = Documentation Q
4 v types
americanFlight: !include /exchange_modules/clb@acdc-127d-4277-bed3-2261fF15b1da/ AP title: American Flights APl
training-american-flight-data-type/1.8.1/Amer icanFlightDataType. ranl
> examples
o0 7 ~ traits:
> exchange_modules 8 v | client-id-required:
v API endpoini
american-flights-api.raml Reot file 10 v M srcipoins
Edit
exchange.json 12 v I or Hiights

v 401
16 iption: Unauthorized, The client_id or client_secret are not valid or the client does
File . not n.l-;culT ess. Hlights/(ID
18 descriptio he client used all of it's request gquota for the current peried. E
browser By e
2a docerintion: An arrar acurrsd. cos the sperific meccase (Onlv if it i< a WSHI ennoint
Types and Traits Root Parameters Docs
| annotationTypes baseUri baseUriParameters | deseription
| resourcetypes mediaType | documentation
protocols API
version
Shelf |
console
| securedsy | uses

Modularizing APIs

- Instead of including all code in one RAML file, you can modularize it
and compose it of reusable fragments

- Data types, examples, traits, resource types, overlays, extensions, security
schemes, documentation, annotations, and libraries

+ Fragments can be stored
- In different files and folders within a project
- In a separate API fragment project in Design Center
- In a separate RAML fragment in Exchange

API| Exchange:

e Public: External developers
e Private: Internal developers

Note: API Designer @ API Exchange (Versions: Stable, Development, Deprecated)

API Community/Developer/Public Portal

7.2. Building API

Flow

Mule event N Mule event > Mule event N Connector
SOUIEE endDOInt
Mule event Mule event Mule event

Mule event

Mule message

Attributes

Variables

The data that passes through flows
in the app

Metadata contained in the message
header

The core info of the message -
the data the app processes

Metadata for the Mule event -
can be defined and referenced in
the app processing the event

Anypoint Studio anatomy

ece [studi ks - apdev-flight xml - Anypoint Studio
=] R R A B ‘5 EE
& [T Package Explorer E% %= 0O Wooval inertaca x ' implementation = B = e palette =D
W G spcer-fignts.ws _ a clear
¥ (28 srcimain/mule (Flows) ¥ mua-fights-api-main rey
x W globalom 00 Sesren in Exchangs.. :w
i implementation xmi %) Add Modules Batch Aggregator
Package W interface.xmi @«' Favorites @ Batch Job
» (3 sremainfave g " Batch Stey
¥ (# src/main/resources Listener APIkit Router d Core @ - M U Ie
xplorer @ e o B
(2 srcitestjava
~ @ neit ® custom Businass Event Pa lette
¥ (3 srcitest resources C @nrre @ Dynamic Evaluate
¥ @ American Flights API [v1.0.2] @' a nva S & sockets @ Flow Refersnce
> B APIKL 11191 @ Validation 1) 1sempotent message Vaiidator

» B HTTR [v1.5.0)

» @ JRE System Library [Java SE 8 [1.8.0_191]]
» Bk Mule Server 4.2.0 EE

» i Sockets [v1.1.4]

* Error handiing

. On Error Propagate
type: APIKIT:BAD_REQUEST

@ web Service Consum:) Lagger
@ Parse Tempiate
© set Transaction ld

+ i Validation [v1.4.0] @ Transtom Messsge
» B Web Service Consumer (v1.3.1] e
=t
@ target © Scheduier
{ bmule-artitact ison Transform Error Hand|
ling
= Message
8 qutine .} @ rror andlor
a Message Flow Global Elements Configuration XML ® on Error Continue

¥ il Intertace : Mule Configuration
» @ mus-flghts-api-mein - Flow
* @ mua-flights-api-console : Flow
» @ get:\flights:mua-flights-api-config - Flow

re & ihts-api-config - o _

* - HTIP : 1.5.0
* - APIKit : 1,19
¢ - American Flights APT : 1.0.2

-0 Mute Properties [E] Problems B console L}

B On Error Propagate
“fEe®e ~e-o-= D

Console

INFO 2019-06-19 14:30:31,917 [Wrapperlistener_start_runner] com.sulesoft,cgent.configuration. postconfigure. Defaul tPostConfigur
INFO 2019-66-19 14:30:31,918 [WrapperListener_start_runner] con rulesoft.agent.configuration. posteonfigure. gu
INFO 2019-66-19 14:30:31,920 [Wrapperlistener_start_rumer] org.eule. runtime. core.internal.logging. Logltil:

+ Mule is up and kicking Cevery 500es) +

¥ getFlightsFlow

ExE®-0-0-6

T Logger
GET Mlights All flights JAVA to JSON

Event processors

¥ Error handling

¥ On Error Propagate

@ —_ 9 Error handling

Set Payload Set Variable

Automating testing of applications

- You can automate testing of Mule applications using MUnit
* MUnit is a Mule app testing framework for building automated tests
« MUnit is fully integrated with Anypoint Studio

- You can create, design, and run MUnit tests and suites of tests
just like you do Mule applications

¥ get:fiignts:american-flights-api-config-200-applicationyjson-FlowTest
Benavior

%+ Debug MUnit suite

W Enable all tests

Execution Validation H |g nore all tests
</ Undo Apply changes
—_—
D
2 Go To XML...
Assert That Status Assert That -
Roques Code is 200 Payload is
Expected E Collapse All

* MUnit is covered in Anypoint Platform Development:
Production-Ready Development Practices

- DataWeave 2.0 is the expression language for Mule to access, query,
and transform Mule 4 event data

- DataWeave is fully integrated with Studio ... -
- . . W Core @ Batch Steg
- Graphical interface with payload-aware development g Components
3 - © Database ©custom 8
- In Studio, the Transform Message component is @ure @oyromice
used for transformations @ e | renaform
(@ Invalidate Message
- DataWeave Playground @i ey
© Logger
- Interactive browser environment for mocking g::j;::;::m
- developer.mulesoft.com/learn/dataweave
&) DataWeave Playground rial Playground
INPUT EXPLORER + SCRIPT OUTPUT JSON
1 %dw 2.0 1 "Helle world!"™

sson payload .
output application/json

2
3
4 payload.message

Creating RESTful interfaces automatically using APIkit

« APIkit is an open-source toolkit that includes an Anypoint Studio plugin

¥ get:\flights:american-flights-api-config

« The Anypoint Studio APIkit plugin can generate an @
interface automatically from a RAML API definition
- For new or existing projects N e
- Can also work Wlth OAS ¥ get:\flights\(ID):american-flights-api-config
« It generates a main routing flow and flows for @
each of the API resource / method pairs iy
- You add processors to the resource flows to hook r——————
up to your backend logic @

Transform
Message

¥ Error handling

Passing messages to other flows

- Flows can be broken into multiple flows

- Makes the graphical view more intuitive and the
XML code easier to read

- Promotes code reuse
- Easier to test with MUnit

= Mule Palette

- All flows are identified by name and can be

Q C
called via Flow Reference components in sgsearh in Exchange.. |Components
Oth er ﬂ ows (+) Add Modules @ Custom Business Event
; R Favorites @ Dynamic Evaluate
- Studio can list all flow references to a flow e
or su bﬂ ow (e American Flights API 9 Idempotent Message Val
- Also provides navigation ©Apikit © Logger
e HTTP @ Parse Template
(= Sockets @ Set Transaction Id

Synchronizing API specifications

« API Sync feature of Anypoint Studio enables you to
- Pull specifications from Design Center into Studio

« You already did this!
- You can also initiate the creation of API specifications from scratch in Studio

- Edit the specification offline in Anypoint Studio
- Push the updates back to Design Center
- Publish the new API asset version to Exchange

« This lets you develop Mule applications while following API lifecycle
development practices from within Anypoint Studio

- If an API specification changes in Exchange, the generated API
interface in Anypoint Studio can be updated
- Flows that have already been modified are not overwritten

Walkthrough 4-7: Synchronize changes to an API

specification between Studio and Anypoint Platform

- Create an editable version of an API specification in Anypoint Studio
» Make changes to an API specification in Anypoint Studio

« Push the changes from Anypoint Studio to Design Center

« Publish the modified API specification from Studio to Exchange

- Update the version of an API specification used in a Mule project

« Rescaffold an API interface from an updated API specification

Mule Properties [£] Problems B Console ~ %y Git Staging X $& g Y=o
> American-Flights-AP| [master]

Unstaged Changes (0)]S Commit Message aFas

Yadd PUT method|

Staged Changes (1) -

agamerican-flights-apiraml 56 autnor I

Deploying and Managing API:

Deploying applications

- During development, applications are deployed to an embedded Mule
runtime in Anypoint Studio

» For everything else (testing, Q&A, and production), applications can
be deployed to

~ CloudHub & CloudHub 2.0 @
+ Platform as a Service (PaaS) component of Anypoint Platform
« MuleSoft-hosted Mule runtimes on AWS CloudHub & CloudHub 2.0

« A fully-managed, multi-tenanted, globally available, secure = =
and highly available cloud platform for integrations and APIs

- Customer-hosted Mule runtimes Customer-hosted
- On bare metal or cloud service providers: AWS, Azure, and runtime
Pivotal Cloud Foundry ~
- Anypoint Runtime Fabric @P
+ Customer-hosted container service of the runtime plane _}

Runtime Fabric

Viewing Deployed Applications with Visualizer

* Visualizer provides a real-time view into your application
architecture in a context that best suits your role

© wobie xa? (0%) & tcommerce 0%)

,/ oo 22
[v—] i
D ok
=] Onder Wistory 1 02
Architecture Troubleshooting Policies

+ Organizes APIs and applications into relational diagrams
- Promotes best practices and layer-based architectural consistency
— Pinpoints issues rapidly through root cause analysis
- Enables visibility into the policy compliance of APIs

- Diagram data is secure and automatically & dynamically updated

Understanding the State of Your Infrastructure

with Anypoint Monitoring

« Anypoint Monitoring provides visibility into integrations across your
app network

Response Time - 99 Percentile Inbound Response Time - 80 Percentile Inbound Response Time - 75 Percentile Inbound

« Its monitoring tools are designed to reduce the time to identify and
resolve issues by providing ways to
- Aggregate and map metrics across dependent systems in real-time
- Configure dashboards and alerts to reduce issue identification time
- Store and search log data at scale

Region > Availability Zones > Workers

Scaling: Horizontal vs Vertical

Restricting access to APIs

« An API proxy is an application that controls access to a web service,
restricting access and usage through the use of an API gateway

*The API Gateway is a runtime designed and optimized to host an API
or to open a connection to an API deployed to another runtime
— Included as part of the Mule runtime
- Separate licenses required ooo o)
- Separates orchestration from implementation concerns \ l /

Proxy Endpoint

:

API Gateway | %@ || AP! Proxy

Implementation
Layer Backend API

The API Gateway is the point of control

* Determines which traffic is authorized to pass through the API to
backend services

* Meters the traffic flowing through
* Logs all transactions, collecting and tracking analytics data

« Applies runtime policies to enforce governance like rate limiting,
throttling, and caching

Restricting access to APIs

+ Use API Manager to manage access to API proxies o0
. : an O on
- Define SLA tiers o l o
- Apply runtime policies \:oxy Ed‘p/‘
T
- The API Gateway enforces the policies API Gateway [%°]*' Py

I
I

* API Autodiscovery is a mechanism that = meiemensaton |
enables a deployed Mule application to

- Download policies from API Manager
- Act as its own proxy

Applying policies to restrict access

. Th ere are Out-of-the box pOIlCles Client ID enforcement JSON threat protection
fO rma ny common use cases Cross-Origin resource sharing Basic Authentication - LDAP
- Rate Ilm Itlng OAuth 2.0 access token enforcement Message Logging
- Spike control -
. Header Injection Rate limiting
- Security
Header Removal Rate limiting - SLA based

» You can define custom policies

(us|ng XM |_ and YAML) Basic authentication - Simple Spike Control
. L. IP blacklist XML threat protection
* You can apply multiple policies B
whitelist

and set the order

- You can define automated policies to comply with
common requirements
- Requires a MuleSoft-hosted control plane

Enforcing access to APIs using SLA tiers

- To enforce, apply an SLA based rate limiting policy

* SLA based pOIiCieS reqUire all applications that http://trainingd-american-api-mmule.us-e2.
consume the API to dloudhub.o/fights
- RegiSter for access to a Specn:ic tier Query parameters
« From an API portal in private or public Exchange pestnston
- Pass their client credentials in calls made to the API

Sandbox - Rate limiting - SLA ba v ‘

® Add

Headers

COPY I Text editor

client_id

e5581d ‘ (&)

‘ client_secret H 56d59e ‘ ©

Walkthrough 5-5: (Optional) Add client ID

enforcement to an API specification

- Modify an API specification to require client id and client secret
headers with requests

- Update a managed API to use a new version of an API specification
« Call a governed API with client credentials from API portals

Note: If you do not complete this exercise for Fundamentals, the REST connector that is created
for the API and that you use later in the course will not have client_id authentication

7.3. iPass
iPaas is a platform for building and deploying integrations within the cloud and between the cloud and
the enterprise. Enterprise iPaa$S solutions are the next generation of cloud applications that enable
connectivity with other cloud-based software, SaaS, on-premises, and legacy applications. With iPaasS,
users can develop and deploy integration flows between these systems without installing or managing
any hardware or middleware.

7.4. APl Management
Designing, publishing, documenting, analyzing, governing, and securing.

7.5. Spec-Driven Development
RAML

e Create expectations: When working with developers, it is critical to inform them of what is
expected, when it should be delivered, and what pain points are to be solved by the API
functionality.

e Service messaging: With the goal of creating new products and services, or transforming existing
products and services, it is paramount to make sure those services and the APIs that provide
access to them align with business goals and lead to services that deliver value.

e Case studies: It’s key to back up assumptions with viable case studies that illustrate the
improvements that APl adoption brings to the table.

e Documentation and support: Make sure the proper tools are in place for the dev team to
document their progress, as well as address change management, along with exposing the
capabilities of an API. Ensure that support for the both the development and implementation
team is readily available.

e SDKs and libraries: Provide the necessary resources to the development team to speed services
development and implementation by offering resources that contain reusable code and
processes.

7.6. Youtube Material

Cloud Computing and
Types of clouds

Private Cloud : Dedicated to a single organization and runs on resources that are solely
managed and operated and by that organization

Public Cloud : Cloud computing environment that is owned and operated by third party
service provider and made available to public over internet. Popular cloud providers
include AWS, Microsoft Azure and Google Cloud Platform

Hybrid Cloud : Combines both private and public clouds. Organizations that adopt hybrid
cloud strategy, use public cloud for less sensitive workloads and private cloud for more
sensitive workloads.

Multi Cloud : Here, organization uses multiple cloud services from different cloud
providers. It enables organizations to take advantage of best-of-breed services offered
by multiple providers to reduce the dependence on single cloud provider. A

e

/

S

Cloud computing models

laaS : Infrastructure as a service is a cloud computing model where the cloud provider
offers virtualized computing resources such as servers, storage and networking over
internet. Examples of laaS providers include AWS, Microsoft Azure, GCP.

Paas : Platform as a service is a cloud computing model where the cloud provider offers
a platform for customers to develop, run and manage their own applications without
having to worry about the underlying infrastructure. Examples of PaaS providers include
Heroku, Google app engine.

SaaS : Software as a service is a cloud computing model where the cloud provider offers
a complete software application that customers can access and use over internet.
Examples of SaaS providers include Salesforce, Microsoft Office 365.

Introduction to MuleSoft \

- Complete Integration Solution : MuleSoft is a complete integration platform as a service |
(iPaaS), providing full range of tools and services for building, deploying and managing |
integrations between various systems and applications \

- API-First Approach : MuleSoft uses an API-first approach, which means the creation and \
management of APIs is at the center of the platform. \

- Wide Range of Connectors : MuleSoft provides a rich set of pre-built connectors, called
Anypoint connectors.

- Scalable and reliable execution environment : MuleSoft runtime provides a scalable and
reliable execution environment for running integrations and APIs.

API-led Connectivity
\

API-led connectivity is the methodology for designing and developing APIs that focus on |
creating reusable and modular pieces of functionality which are combined to form end to
end business capabilities. Below are the key components of API-led connectivity : \

Experience APIs : These are designed to enable the delivery of user-facing experiencq‘s.
Provide a way for applications to access data and functionality through a simple and |
consistent interface, abstracting away the underlying systems of record. \

Process APIs : These are used to manage and orchestrate business processes. Provide a\uay
different systems to communicate and collaborate to accomplish a specific business ouﬂ\c

System APIs : System APIs provide access to systems of record , such as databases and legacy
systems.

/ Experience API \
Process API

.
REST APIs

J

Set of architectural principles for building web-based APIs. Following are some of the key
characteristics of REST APIs:

.

Client Server Architecture : REST APIs follow client-server architecture where client makes re%uest
to server and server returns responses. \

Statelessness : REST APIs are stateless, meaning request from client to server contains all \
information necessary to complete the request. \

Cacheability : REST APIs should be designed to be cacheable, meaning that responses from APIs can
be stored by intermediate caches to improver performance.

+ Layered System: REST APIs follow a layered system architecture where different layers of system
can be isolated and updated independently.

+ Uniform Interface : REST APIs have a uniform interface meaning that they use a consistent set
operations (such as GET, POST, PUT and DELETE) to interact with resources.

Common HTTP codes and operations

1xx Information

2xx Success/OK

3xx Redirection

4xX Client Side Error

5xx Server Side Error

GET Retrieve resource information

POST Create a new resource

DELETE Delete the resource]
PUT Update the resource

API Life Cycle

Design

Implementation S

\ E

Management

R,

MuleSoft Anypoint Platform

MuleSoft’s Anypoint platform is a unified platform for API-led connectivity that provides complef’e
solution for designing, building, managing and deploying APIs and integrations. It consists of 2 main
components as depicted below : ‘

\
\
Control Plane
API Designer
APl manager

Runtime Manager
Exchange

Access Management
Monitoring

Run Time Engine

\
IW
\
I\
‘E
Anypoint Connectors '

Run Time Plane

MuleSoft Deployment Models

|
Cloud Hub Standalone |RTF on RTF on self- | Anypoint Platform
Mule VMs/Bare managed Private Cloud Edition
Runtime Metal Kubernetes
Control
Plane MuleSoft MuleSoft MuleSoft MuleSoft Customer
Hosted by
Run Time
Plane MuleSoft Customer Customer Customer
Hosted By

Customer

Scaling

i)
4 processors 2 GB RAM
2 GB RAM
2 GB RAM
- P
i N
2 GB RAM 4 GB RAM
\- J

NGL__LGB RAM

8 processors

8 processors 8 processors
16 GB RAM 16 GB RAM

4 processors
2 GB RAM Diagonal Step2

16 GB RAM

+ Flex Gateway : It’s a component of MuleSoft’s Anypoint Platform that provides API manag‘Em

Flex Gateway & Service Mesh

capabilities for managing, securing, and analyzing API traffic. It allows you to manage and.\
secure APIs through features like rate limiting, security policies and analytics. \

Service Mesh : It’s a dedicated infrastructure layer for managing network traffic between |
microservices in a distributed system. Service mesh provides features like load balancing, traffic
management, service discovery and security. \

\ / Service 1 \ |

Consumers

Flex Gateway

API

CRM and ERP systems integration

MuleSoft’s Anypoint Platform provides the tools and technologies needed to integrate
CRM and ERP systems quickly and effectively. The platform includes pre-built connect
for popular CRM and ERP systems, such as Salesforce, Oracle, and SAP, as well as a
powerful integration engine for building custom integrations. "

Marketing
Sales Department

g Finance
Customer Interactions

MuleSoft Supply Cain
Human Resource

Lead Management
Customer Service

CRM functions ERP functi_ons'.

Enterprise Resource Planning (ERP): Corporate management.

Customer Relationship Management (CRM): Sales and Marketing. Relation between Business and
Clients.

Human Capital Management (HCM): Businesses manage their employees, from hire to retire

Supply Chain Management (SCM): Flow of goods, data, and finances related to a product or service, from
the procurement of raw materials to the delivery of the product at its final destination.

MuleSoft Catalyst

As per Mulesoft, MuleSoft Catalyst is a unique operating model that provides thé
best practices, online tutorials, templates and resources for MuleSoft customers|
and partners at all levels of experience ‘-

=)
3 pillars of MuleSoft Catalyst

Business
outcomes

Organization Enablement
Technology Delivery
Business Qutcome @ -0

success

Technology Organization
delivery enablement /

7.7. Quizlet

What is the IT delivery gap?

The growing gap between IT delivery capacity and the ability of IT to
meet those demands

What is the MuleSoft Catalyst?

MuleSoft Catalyst is centered on three core pillars: Business
Outcomes, Organizational Enablement, and Technology Delivery.
BOT

What are some common
factors for IT delivery gaps?

1. Lack of alignment around Business Outcomes
2. Organization wasn't Enabled to deliver success
3. Project took too long to realize value

What is MuleSoft's approach
for closing IT gaps?

A new approach enables central IT to focus on operating, connecting,
and abstracting systems of record (System APIs). Subsequently, the
line of business IT benefits by consuming previously built assets and
then extending those resources into new solutions, ultimately
delivering customer-facing innovation. This enables a model for
PRODUCTION, CONSUMPTION, and FEEDBACK... Also known as an
Application Network.

What is API-Led Connectivity?

A production + consumption model (i.e. core capabilities must be
packaged up for consumption) or a way to connect data to
applications through a series of reusable and purposeful modern
APlIs (System, Process, and Experience).

SPE

What is an Application
Network?

An application network emerges from our approach to enterprise
integration, called API-LED CONNECTIVITY, and our equally unique
approach to organizational structure and application delivery, the
CENTER FOR ENABLEMENT.

What is an Application
Building Block?

An Application Network is composed of application building blocks.
These have multiple elements. The APl interface, the API
implementation, and the APl management can be considered as
building blocks. All building blocks have their own specific, unique
lifecycles to follow.

1M

What are System API?

System APIs provide a means of insulating the user from the
complexities or any changes to the underlying systems we are trying
to integrate (authenticate) with. It is focused on Connectivity.

What are Process APIs?

Process APIs interact with and shape data within a single system or
across systems (breaking down data silos) and are created here
without a dependence on the source systems from which that data
originates. This is typically where the business logic is implemented
for further processing data.

What are Experience APIs

Experience APIs are the means by which data can be reconfigured so
that it is most easily consumed by its intended audience, all from a
common data source. Experience APls are concerned with how data
is presented securely.

What is the Center for
Enablement (C4E)?

With a major culture shift that the new API development model
requires, there needs to be a people and business process
component as well. We suggest doing this by establishing a
cross-functional team called a Center for Enablement, or C4E.

What are the different
paths/playbooks for the
MuleSoft Catalyst
methodology?

® Business Outcome

e Organizational Enablement
o Center for Enablement (C4E)
o Internal Support
o Training

e Technology Delivery
o Anypoint Platform
o Projects

What is agile development?

An iterative approach to project delivery, in which software is built in
an incremental fashion from the beginning of the project by creating
user stories, prioritizing, and then implementing code.

What are the three main
building blocks for the
complete MuleSoft API
lifecycle?

Design, Implement, and Management.

What are the stages of design
an APl in MuleSoft?

Start from an outside-in perspective and then Design, Simulate,
Feedback, and Validate.
DSFV

What are the stages of
implementation in MuleSoft?

Accomplished in a systematic manner, we Build and Test in the
implementation phase (Roles involved in this stage include:
Integration Dev, Architects, Ops, APl Manager).

BT

How do we manage an API
with MuleSoft?

Embracing modern DevOps-centric processes and tooling is critical to
reduce mean time-to-production then Secure, Deploy, Monitor,
Troubleshoot, and Manage.

SDMTM

Describe the different Roles
within a MuleSoft team

Platform Architect, Integration Architect, Developer, and Operations.

What is DevOps?

The word DevOps is a combination of Development and Operations,
symbolizing that these functions must merge and cooperate to meet
business requirements. Cl/DC, automated testing, and active
monitoring are the most common principles.

What does CI/CD stand for?

Continuous Integration/Continuous Delivery

What in an API?

An APl is equivalent to a user interface, except it's designed for
software instead of humans. This is why APIs are often described in
the media as technology that allows applications to talk to one
another.

What is Cloud Computing?

A collection of virtualized, software-defined information technology
(IT) functions that have been abstracted from the hardware. Think of
the cloud as a virtual data center.

What is Software as a Service
(SaaS)?

Application software. This provides the user-facing applications that
enable business.

What is Platform as a Service
(Paas)?

An infrastructure that supports application development. PaaS offers
developers access to managed programming language and database
ecosystems in which they can automatically deploy their application
code. The middleware that enables the development of advanced
applications (l.e. Operating systems, Middleware, Software,
Runtime).

What is Infrastructure as a
Service (laaS)?

A virtualized environment on which systems can be deployed. 1aaS is
the bottom base layer and provides the underlying infrastructure
that enables and supports PaaS and SaasS. (i.e. Servers, Storage,
Networks, and Security).

What is software scalability?

From a business point-of-view, scalability is the ability to serve
customers seamlessly even when a sudden change in demand
occurs. From an IT point-of-view, scalability is the ability to
add/remove infrastructure resources needed by business
applications to manage the increased/decreased demand in the
number of business transactions.

What is a Vertical Scale?

Increase the compute and/or memory capacity of the server

What is a Horizontal Scale?

Add more servers to the server pool

What is a Diagonal scale?

Increase the compute memory capacity and then add more servers
horizontally once you've maximized your vertical.

What does SOA mean?

Service Oriented Architecture

What are Microservices?

A variant of the service-oriented architecture structural style - it is an
architectural pattern that arranges an application as a collection of
loosely coupled, fine-grained services, communicating through
lightweight protocols. Its approach is consistent with microservices
and vice versa.

What are the 3 main
components for API-Led
Connectivity?

Interface, Orchestration, and Connectivity. Use a top-down approach
for design, starting with how data is presented to the interface, how
data is translated/manipulated, and how data is connected.

10C

What is the Interface?

Presentation of data in a governed and secure form
eAPI

What is the Orchestration?

Application of logic to that data, such as transformation or
enrichment
pAPI

What is Connectivity
concerned with in MuleSoft?

Access to source data, whether from physical or external services
(i.e. System APIs)
SAPI

What is the aggregation of
data?

Data from multiple applications are copied into a central location for
further analysis and processing, for example, data warehouses, data
lakes, or dashboards tools (i.e. APls, iPaas, Virtualization, B2b
transfers, File Transfers, and ETL).

What does streaming data
mean?

Typically, such devices can generate data either at a slow pace (every
minute or hour) or at a fast pace (sub-milli-second) to provide
updates to a subscriber/listener (i.e. Messaging Bus, Streaming
Platforms).

What is bulk or batch data
movement?

Scenarios where delays in presenting information is acceptable or
presenting information in real-time is not required. Such scenarios
optimize and provide better utilization of the resources.

Synchronous and
Asynchronous triggers?

Exchange data in either a sequential pre-defined order or return a
promise and start other processes while waiting for a response (i.e.
APIs, Robotic Process Automation, iPaaS)

What is orchestration and data
processing?

A layer of abstraction is developed between the source and target
where deeper business logic is embedded (Process APls). Often the
orchestration use cases are heavily tied and specific to the
underlying business domains (i.e. iPaas, Robotic Process Automation)

What does ETL stand for?
When is it used?

Extract, Transform, Load. ETL can be used to store legacy data or
aggregate data to analyze and drive business decisions.

What are the 4 integration
primitives? Describe each
primitive.

Components, Interactions, Messages, and Interfaces. Components
relate to each other through Interactions. Interactions consist of one
or more Messages, and are communicated through Interfaces.

What are the 3 Interaction
type primitives? Describe each
primitive

Queries, Commands, and Events. Queries do not change the system
state, Commands collaborate to change the system state, and Events
that communicate the changed state.

What are the 5 interaction
pattern primitives? Describe
each primitive.

Request-reply, One-way, Multicast, Batch, and Stream. Request-reply
is when a component sends a message to another and expense a
response. One-way is when a component sends message to another
without expecting a response. Multicast is when a component sends
a single message to multiple components. Batch is when a
component sends a bounded collection of messages to another

component. Stream is when an unbounded serious of messages is
sent from one component to another.

What are the 3 interaction
composition primitives?
Describe each primitive.

Aggregation, Orchestration, and Choreography compositions.
Aggregation is a form of stateless composition where a component
receives a single query request, then executes multiple queries to
other components and assembles their responses to formulate a
reply. Orchestration is the stateful coordination of interactions,
where the flow may change depending on intermediate results. The
third composition pattern, choreography, is the reactive coordination
of component actions based on interaction triggers and resulting
events. Choreography is where microservices work independently
but coordinate with each other using cues or events.

What are MuleSofts 3 pillars of
Observability?

Logs, Metrics, and Traces.

What are Logs in MuleSoft?

Messages logged by an application, system or OS when an event
occurs.

What are Metrics in MuleSoft?

Metrics are measurements, for example a system sending the
current CPU or memory state to a collector.

What are Traces in MuleSoft?

Clues left behind by a transaction as it flows through different
applications. Traces weave a complete transaction from beginning to
end.

What is Cloud deployment in
MuleSoft?

A cloud-based application is fully deployed in the cloud. Cloud
deployment options include Commercial Anypoint and Government
Anypoint.

What are MuleSofts 3
deployment options?

Cloud, Hybrid, Private Cloud (i.e. On-Premise).

What is Hybrid deployment in
MuleSoft?

A hybrid deployment is a way to connect infrastructure and
applications between cloud-based resources and on-premises
systems. Hybrid options include classic mule runtimes and container
based runtime fabrics.

What is a Private Cloud in
MuleSoft?

Deploying resources on-premises, by using virtualization software
and resource management tools, is called private cloud. Customers
own Anypoint private cloud deployed in their datacenter.

What are the limitations or
challenges created by using
Microservices?

Governance, security, and discoverability.

What is an APl Gateway?

API Gateway is one of three components in APl Management; the
others being developer portals and API security. The APl Gateway
controls North-South traffic out of the Kubernetes cluster, it is there
for security purposes.

What is an Anypoint
Connector?

Reusable extensions to Mule runtime engine (Mule) that enable you
to integrate a Mule app with third-party APls, databases, and
standard integration protocols. Connectors abstract the technical
details involved with connecting to a target system.

What is the typical DevOps
lifecycle?

The lifecycle starts with establishing a continuous integration
process, then transitions to producing and deploying software
efficiently through a pipeline.

What is Maven?

A build automation tool and dependency manager.

What is MUnit?

The MuleSoft integration testing framework, to help our developers
and our customers create tests with mock data.

What is Jenkins?

Jenkins is an open source automation server. It helps automate the
parts of software development related to building, testing, and
deploying, facilitating continuous integration and continuous
delivery.

What is a web service?

A method of communication that allows two software systems to
exchange data over the internet. It is the actual APl implementation
you make callouts to.

What is an API proxy?

It controls access to a web service, restricting access and usage
through the use of an AP| gateway

What is an APl Notebook?

An API Notebook is the artifact to convey the inspiration for what is
possible with an API, for example a MuleSoft portal.

What is Virtualization?

Virtualization enables a single server to run the operating systems
and applications from multiple servers simultaneously.

What does data sync mean?

When data is required in other systems to complete the transaction,
for example sending order information to an ERP and returning an
external order number (i.e. APls, Messaging Bus, iPaas,
Virtualization, File Transfer).

What is KafKa?

Kafka is a distributed data store optimized for ingesting and
processing streaming data in real-time. Kafka is primarily used to
build real-time streaming data pipelines and applications that adapt
to the data streams.

What is the purpose of an API
specification? What are some
benefits to having an API
spec?

An API spec consists of a plan of how your API should look
structurally - like a blueprint of a house. It's a key part of API
development because it can help you isolate design flaws or
problems before you write a line of code saving you time by
future-proofing your design/solution.

What is the difference
between monolithic and
microservices?

A monolithic application is built as a single unified unit while a
microservices architecture is a collection of smaller, independently
deployable services. Monolithic architectures are hard to develop
and maintain, a microservices architecture allows for greater agility
with its smaller, more targeted services.

What is a Service Mesh?

A service mesh is an architectural pattern for microservice
deployments. It is just an infrastructure layer that sits on the top of
the micro services and handles all the communications between
services. It also addresses the challenges created by microservices by
drawing out common capabilities of security, fault tolerance, and
management out of the service code.

What is the difference
between a service mesh and
an APl Gateway?

A service mesh aims to manage internal service-to-service
communication, while an APl Gateway is primarily focused to
manage traffic from client-to-service.

What is the Control plane in
Anypoint Platform?

The Anypoint Platform control plane provides a set of cloud services
that simplify the design, reuse, and management of integrations and
APIs (i.e. US Cloud, EU Cloud, Government Cloud, and Private Cloud).

What is the Runtime plane?

The Anypoint Platform runtime plane is where applications are
deployed, and also where the Mule runtime engine and other
application-related services, such as Anypoint Connectors run (i.e.
CloudHub, Anypoint Runtime Fabric, On Premise Mule Runtime).

When is the Runtime Fabric a
good deployment option?

Use Anypoint Runtime Fabric to deploy Mule runtimes within your
own data centers, whether it's in a private laaS (Microsoft Azure or
AWS) or on-premises infrastructure.

	1.​Identify the roles, responsibilities, and lifecycle phases of a typical integration project
	1.1.​MuleSoft Catalyst Playbooks
	1.1.1.​Discover the MuleSoft IT Operating Model
	1.1.2.​Learn about the MuleSoft Catalyst Delivery Methodology

	1.2.​Closing the IT delivery gap
	1.3.​What is agile project development?
	1.4.​API lifecycle management
	1.4.1.​Design
	1.4.2.​Implementation
	1.4.3.​Management

	1.5.​DevOps Resources
	1.6.​Learning Paths

	2.​Recognize and interpret essential integration concepts and terminology used by MuleSoft architects and developers
	2.1.​About the Cloud
	2.2.​iPaaS: Integration for the Cloud
	2.3.​What does scalability in cloud computing mean?
	2.4.​Network Security
	2.5.​API Basics
	2.5.1.​Make APIs for You and Me
	2.5.2.​Learn the Benefits of APIs
	2.5.3.​Put the Web in Web API

	2.6.​Getting Started with Anypoint Platform – Module 1

	3.​Recognize common integration problems, deconstruct them into their fundamental integration use cases, and identify the appropriate technologies to solve them
	3.1.​Connect Sales Cloud to ERP with Anypoint Platform
	3.2.​API-led connectivity
	3.3.​iPaaS vs. full lifecycle API management: Why you need both
	3.4.​Top 10 integration patterns for enterprise use cases

	4.​Explain the common technical complexities and patterns that are central in integration development
	4.1.​A primitive look at digital integration
	4.2.​Choosing a great API spec saves time and hassle
	4.3.​Everything you need to know about observability in Anypoint Platform
	4.4.​Understand the Different Cloud Computing Deployment Models
	4.5.​Service mesh together with API management

	5.​Describe the components and benefits of Anypoint Platform for system integration
	5.1.​API Lifecycle Management with Anypoint Platform
	5.1.1.​Explore the Application Network
	5.1.2.​Integrate Your Systems

	5.2.​Getting Started with Anypoint Platform - Module 2
	5.2.1.​Introducing Anypoint Platform
	5.2.2.​Achieving success with Anypoint Platform
	5.2.3.​Introducing the components of Anypoint Platform
	5.2.4.​Building integration applications and APIs with Design Center
	5.2.5.​Introducing Mule Runtime

	5.3.​Introduction to Anypoint Connectors
	5.4.​Deployment options of Anypoint Connectors
	5.5.​APIs and DevOps
	5.6.​Anypoint Exchange Asset Types

	6.​Describe the components and benefits of Anypoint Platform for API management
	6.1.​Introducing universal API management on Anypoint Platform

	7.​Ancillary
	7.1.​Designing API
	7.2.​Building API
	7.3.​iPass
	7.4.​API Management
	7.5.​Spec-Driven Development
	7.6.​Youtube Material
	7.7.​Quizlet

