Source Links (Part 1)

How Google Willow is 1 Nonillion+ times faster than ordinary supercomputers (in standard benchmark test) - 10 Septillion years divided by 5 minutes = 1,051,200,000,000,000,000,000,000,000

- 1. Google Willow chip spectacle:
 - a. https://youtu.be/W7ppd_RY-UE?si=Hyu77K9X6E6wD5B_&t=29
 - b. https://youtu.be/NB9K4CoYSIM?si=6jedW8Tz5t upnKQ
 - c. https://youtu.be/G3o4sPpGWFI?si=IZCS0b_v67oJWGzv
- 2. Quantum computers can Increase Human Lifespan
 - a. https://www.sify.com/science-tech/want-to-live-150-years-digital-biology-will-soon-crack-it/#:~:text=The%20modelling%20and,case%20you%20missed%3A
- 3. Quantum Computer technology @Xanadu
 - a. https://thelogic.co/news/federal-fund-backs-xanadu-with-40m-to-develop-quantum-computing-technology/
- 4. Antikythera Mechanism Device details
 - a. https://historified.in/2024/04/16/decoding-the-antikythera-mechanism-unraveling-the-secrets-of-ancient-technology/
 - b. https://en.wikipedia.org/wiki/Antikythera_mechanism#:~:text=The%20Antikythera%20mechanism%20(/,and%20worked.%5B20%5D
 - c. https://www.nature.com/articles/s41598-021-84310-w#:~:text=Reconstructing%20the%20Cosmos%20at%20the,in%20Supplementary%20Discussion%20S2.
- 5. Charles Babbage and his models
 - a. What exactly is a computer?
 https://www.hpe.com/in/en/what-is/compute.html#:~:text=The%20term%

- 20%22compute%22%20in%20the,algorithm%20execution%2C%20and %20mathematical%20operations.
- b. https://www.sciencemuseum.org.uk/objects-and-stories/charles-babbage-s-difference-engines-and-science-museum#:~:text=Example%20of%20a, <a href="https://www.sciencemuseum.org.uk/objects-and-stories/charles-babbage-s-difference-engines-and-science-museum#:~:text=Example%20of%20a, https://www.science-engines-and-science-museum#:~:text=Example%20of%20a, https://www.science%20Museum%20Group
- c. Clips https://youtu.be/0anlyVGeWOI?si=g8P4YUL_g2PH0Fe&t=35
- d. https://youtu.be/BlbQsKpq3Ak?si=SkMwD9GBDhjQcqiY&t=91
- e. Punch Cards as initial algorithms https://www.wowstem.org/post/ada-lovelace#:~:text=This%20one%20was,really%20clever%20idea!
- f. https://en.wikipedia.org/wiki/Note_G#:~:text=In%20the%20modern%20error.

6. First Transistor:

- a. https://en.wikipedia.org/wiki/History_of_the_transistor#:~:text=The%20B ell%20team%20made.transistor%20had%20been%20invented.
- b. https://engineerguy.com/making/background-transistor-operation.pdf?utm_source=chatgpt.com
- c. https://www.intel.com/content/www/us/en/newsroom/tech101/the-transist-or-explained.html#gs.j64res:~:text=How%20the%20Modern.of%20the%20universe.
- d. Vacuum Tube technology <u>https://youtu.be/FU_YFpfDqqA?si=Jex73SE2WrHNMpq0&t=168</u>
- e. https://en.wikipedia.org/wiki/History_of_the_transistor#:~:text=First%20w orking%20transistor%5B,transistor%20had%20been%20invented.

7. Moore's Law and it's implications -

- a. <a href="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-transistors-get#:~:text="https://www.waferworld.com/post/how-small-can-
- b. https://www.investopedia.com/terms/m/mooreslaw.asp#:~:text=seconds <a href="https://www.investopedia.com/terms/m/mooreslaw.asp#:~:text=seconds https://www.investopedia.com/text-asp#:~:text=seconds https://www.investopedia.com/text-asp#:~:text=seconds https://www.investopedia.com/text-asp#:~:text=seconds https://www.investoped
- c. <a href="https://en.wikipedia.org/wiki/Transistor_count#Microprocessors:~:text=Plot%20of%20MOS%20transistor%20counts%20for%20microprocessors%20against%20dates%20of%20in%C2%ADtro%C2%ADduction.%20The%20curve%20shows%20counts%20doubling%20every%20two%20years%2C%20per%20Moore%27s%20law.

8. More about Scilly Naval Disaster

https://historicengland.org.uk/listing/what-is-designation/heritage-highlights/sinking-of-ship-lead-to-invention-of-marine-chronometer/#:~:text=On%2021%200ctober,25%20mariners%20survived.

9. Pascaline Calculator technology -

https://www.britannica.com/technology/Pascaline#:~:text=Pascaline%2C%20the%20first,next%2010%20years.

10. Thermionic Emission and Edison Effect

https://en.wikipedia.org/wiki/Thermionic_emission#:~:text=This%20effect%20had,%5B23%5D

11. Richard Feynman On Quantum computers -

https://www.forbes.com/sites/ibm/2016/05/04/with-the-dawn-of-quantum-computing-lets-build-a-quantum-community/#:~:text=In%201981%2C%20at,look%20so%20easy.%22

- 12. Feynman proposing the idea of using Spin of electrons as computer bits https://drive.google.com/file/d/1whKp9Y4lwNUKqoN8MkZXOynG9vTl66wy/view?usp=sharing
- 13. Potential applications of Quantum Computers and their power
 - https://builtin.com/hardware/quantum-computing-applications#:~:text=10
 %20Quantum%20Computing.
 - https://pixelplex.io/blog/quantum-computing-applications/
 - https://www.sify.com/science-tech/want-to-live-150-years-digital-biologywill-soon-crack-it/#:~:text=The%20modelling%20and,case%20you%20m issed%3A
- 14. Google Willow performance statistics
 - https://youtu.be/W7ppd_RY-UE?si=I951ryaop1I8ZXeN&t=110
 - https://www.quantum-machines.co/blog/understanding-googles-quantum-error-correction-breakthrough/#:~:text=At%20the%20heart%20of%20the%20system%20was%20real%2Dtime%20synchronization.%20Every%20correction%20cycle%20had%20to%20complete%20within%201.1%20%C2%B5s%E2%80%94a%20narrow%20window%20in%20which%20the%20qubits%20were%20measured