POTER ES MODERNA

PSN COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Recognised by AICTE, New Delhi and Affiliated to Anna University, Chennai)
Accredited with A+ Grade by NAAC.
An ISO 9001:2015 Certified Institution
Melathediyoor, Tirunelveli – 627 152

IC630017 - NUMERICAL METHODS AND STATISTICS

MULTIPLE CHOICE QUESTION

9. Condition for convergence of Newton Raphson method is
$_{ m a)} \ \left \phi'(x) ight \leq \ 1$
$_{b)}\ \left f(x)f\ "\ (x)\right \leq \left f'(x)\right ^{2}$
$ \phi'(x) > 1$
d) $ f(x)f"(x) > f'(x) ^2$
10. Formula for iterative method is
a) When $\mathbf{x}=\mathbf{g}(\mathbf{x})$ b) $x_{n+1}=g(x_n)$
$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$
11.Formula for Regula falsi method is a) When x=g(x)
$_{\mathrm{b)}}\ x_{n+1}\ =\ g(x_{n})$
$egin{array}{lll} x_{n+1} &=& g(x_n) \ x_{n+1} &=& x_n - rac{f(x_n)}{f'(x_n)} \end{array}$
$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$
f(b) - f(a)
12.Formula for Newton Raphson method is a) * When x=g(x)
$_{\mathrm{b)}}\ x_{n+1}\ =\ g(x_{n})$
$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
af(b)-bf(a)
$\operatorname{d}_{\operatorname{d}_{\operatorname{l}}} x_{1} \; = \; \frac{af(b) - bf(a)}{f(b) - f(a)}$
13. A real root of $x^3 + x - 11 = 0$ is a) $(0,1)$ b) $(1,2)$ c) $(2,3)$ d) $(3,4)$
14 A most most of $\rho^x = A m$
a) $(0,1)$ b) $(1,2)$ c) $(2,3)$ d) $(3,4)$ 15. A real root of $x^3 - 2x - 5 = 0$
15. A real root of $x^3 - 2x - 5 = 0$ a) $(0,1)$ b) $(1,2)$ c) $(2,3)$ d) $(3,4)$
16. In Gauss elimination method, the given system is transformed into an equivalent system
with

a) Lower triangular matrix

- b) Upper triangular matrix
- c) Diagonal matrix
- d) Identity matrix

17. The solution of x+y=1, 2x+3y=2 by Gauss elimination method is _______
PSNCET, TIRUNELVELI

a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
18. The solution of $2x+y=3$, $x+3y=4$ by Gauss elimination method is
a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
19. The solution of $x+y=1$, $2x+3y=3$ by Gauss elimination method is
a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
20. The solution of $x+y=2$, $2x+3y=5$ by Gauss elimination method is
a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
21. The solution of $x+y=1$, $2x+3y=2$ by Gauss jordan method is
a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
22. The solution of 2x-y=1, 2x+3y=5 by Gauss jordan method is
a) $(1,1)$ b) $(0,1)$ c) $(1,0)$ d) $(0,0)$
23. Find inverse of the system 5x+4y=15, 3x+7y=12 using Guass - Jordan method
a) x=2.8965, y=0.4567
b) x=2.4783, y= 0.6522 c) x=2.7963, y=0.3942
d) x=2.6734, y=0.4316
u) x-2.0/54, y-0.4510
24. Find inverse of the system $5x+4y=9$, $3x+7y=10$ using Guass - Jordan method
a) $x=1$ $y=1$ b) $x=1$, $y=2$ c) $x=2$, $y=1$ d) $x=2$, $y=2$
25. Condition for the convergence of Gauss – Seidel method is
a) 0
b) 1
c) dominant
d) diagonally dominant
26. For the system of equations $x+y+54z=110$, $27x+6y-z=85$, $6x+15y+2z=72$ by using Gauss
seidel method the initial values are
a) 2.4322, 3.572, 1.925
b) 3.148, 3.5408, 1.913
c) 2.42569, 3.5729, 1.92595
d) 2.42550, 3.573, 1.92595
27. In Gauss - Jordan method, the given system is transformed into an equivalent system with*
a) Lower triangular matrix
b) Upper triangular matrix
c) Diagonal matrix
d) Identity matrix
28. Pick the not diagonally dominant matrix
$(r \ 0 \ 1) \ (0 \ 0 \ 0) \ (0 \ 1 \ 2) \ (4 \ 2 \ 1)$
$\begin{pmatrix} 5 & 3 & 1 \\ 3 & 8 & 4 \\ 1 & 2 & 6 \end{pmatrix} \begin{pmatrix} 8 & 2 & -3 \\ 5 & 6 & 4 \\ 3 & 2 & 6 \end{pmatrix} \begin{pmatrix} 9 & 1 & 2 \\ 2 & 3 & -1 \\ 3 & -2 & 7 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 \\ 2 & 5 & 0 \\ 3 & 2 & 7 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 6 \\ 1 & 2 & 6 \end{pmatrix}$ $\begin{pmatrix} 3 & 2 & 6 \\ 3 & 2 & 6 \end{pmatrix}$ $\begin{pmatrix} 3 & -2 & 7 \\ 3 & -2 & 7 \end{pmatrix}$
29. If the eigenvalues of A are -4,3,1 then the dominant eigenvalue of A is
a) -4 b)4 c)3 d)1
30. If the eigenvalues of A are 1,3,4 then the dominant eigenvalue of A is
a) -4 b)4 c)3 d)1
31. Newton- Gregory Forward interpolation formula can be used
PSNCET, TIRUNELVELI

	a) only for equally spaced intervals									
b) only for unequally spaced intervals										
	c) for both equally and unequally spaced intervals									
	d) for unequally intervals									
32.	32. Find n if $x0 = 0.75825$, $x = 0.759$ and $h = 0.00005$.									
22	a) 1.5	:f0 - 0 (b) 15	C 1 1	c) 2.5		d) 25			
33.	33. Find x if $x0 = 0.6$, $n = 2.6$ and $h = 0.2$.									
	a) 12 b) 1.2 c)1.12 d) 1.22 Find n for the following data if f(0.2) is asked.									
						<u> </u>			1	
	$\frac{x}{f(\mathbf{Y})}$	176	1 185	$\begin{array}{ c c }\hline 2\\\hline 194\\ \hline\end{array}$	203	$\begin{array}{c c} 4 \\ \hline 212 \end{array}$	5 220	$\frac{6}{229}$	-	
34.	f(X)	170	<u> </u>	194				229]	
	a) 0.4		b) 0.2		c) 1		d) 0.1			
	Find	n for th	e foll	owing	data	if f(1.	8) is as	sked.		
	X	()	0.5		1	1.5		2	
35.	F(X	0.39	989	0.352	1 0.2	2420	0.129	95 0	0.0540	
	a) 2.4		b) 3.4		c) 2.6		d) 3.6			
36.	Using N	Newton's	Forward	l formul	a, find s	in(0.16	04) from	the fol	lowing table	
	X		0.160		0.161		0.162			
	f(x)	: 0.159	9318206	0.16	030535	41 0.1	16129234	412		
	 a) 0.169713084 b) 0.159713084 c) 0.158713084 d) 0.168713084 									
F(a) 7	37. Find f(5) using Newton's Forward interpolation formula from the following table. x 0 2 4 6 8 F(x) 4 26 58 112 466 a) 71.109375 b)61.103975 c)70.103957 d)71.103957 38. Can we use lagrange interpolation formula when the intervals are equal? a) Yes									
 b) No 39. The divided difference are in all there arguments a) Equal b) Unequal c) Symmetrical d) Unsymmetrical 										
40.	d) Unsymmetrical 40. The nth divided difference of a polynomial of the nth degree are a) constant b) variable c) equation d) none									

41. The order of convergence of cubic spline	
a) 1 b)2 c) 3 d) 4	
42. The cubic spline is also called spline	
a) Artificial b) natural c) random d) none	
43. Newton's interpolation formula are not suited to estimate the value of a function near the	
middle of table	
a) true	
b) false	
44. The process of finding the value of a function inside the given range is called	
a) formation b) iteration c) interpolation d) none	
45.Lagrange interpolation formula can be used for intervals	
a) equally spaced	
b) unequal spaced	
c) both equal and not	
d) none	
46. Lagrange interpolation formula can be used for inverse interpolation	
a) true	
b) false	
c) neither true nor false	
d) either true or false	
47. Newton's interpolation formula can be used for inverse interpolation	
a) true	
b) false	
c) neither true nor false	
d) either true or false	
48. Inverse interpolation is the process of finding the value of	
a) x corresponding to y	
b) y corresponding to x	
c) xy	
d) none	
49. Direct interpolation is the process of finding the value of	
a) x corresponding to y	
b) y corresponding to x	
c) xy	
d) none	
50. Given n+1 data pairs, a unique polynomial of degree passes through	n
+1 data points.	
a) $n+1$ b) $n+1$ or less c) n d) n or less	
51. Find the polynomial for the following data	
x 4 6 8 10	

52.	a)b)c)	curve fitting regression analysis curve fitting and regression analysis none
53.	a)b)c)	wton forward interpolation is used in interval points at the beginning points at the end points intermediate points none
54.	a)b)c)	wton backward interpolation is used in interval points at the beginning points at the end points intermediate points none
55.	a)b)c)	ling interpolation is used in interval points at the beginning points at the end points intermediate points none
56.	a)b)c)	wton backward interpolation formula can be used only for equally spaced intervals only for unequally spaced intervals for both equally and unequally spaced intervals for unequally intervals
57.	a)b)c)	only for equally spaced intervals only for unequally spaced intervals for both equally and unequally spaced intervals for unequally intervals
58.	a)b)c)	grange's interpolation formula can be used only for equally spaced intervals only for unequally spaced intervals for both equally and unequally spaced intervals for unequally intervals
59.	a)b)c)	only for equally spaced intervals only for unequally spaced intervals for both equally and unequally spaced intervals for unequally intervals

a) $1/8(3x^2-22x+36)$ b) $3x^2-22x+36$ c) $\frac{1}{2}(3x^2-22x+36)$ d) $1/6(3x^2+22x+36)$

60.	Linear interpolation is
	a) easy b) precise c) easy and precise d) none
61.	Numerical differentiation can be used only when the difference of some order
	a) constant b) linear c) multiple d) None of the above
62.	What is the order of error in trapezoidal rule?
	a) 1 b) 2 c) 3 d) 4
63.	What is the order of error in Simpson rule?
	a) 1 b) 2 c) 3 d) 4
64.	Which one is more reliable?
	a) Simpson rule b) Trapezoidal rule c) none
65.	Whenever trapezoidal rule is application Simpson rule can be apply
	a) True b) False
66.	Number of subintervals for trapezoidal rule is
	a) Even b) multiple of three c) any number d) none
67.	Number of subintervals for Simpson's 1/3rd rule is
	a) Even b) multiple of three c) any number d) none
68.	Number of subintervals for Simpson's 3/8th rule is
	a) Even b) multiple of three c) any number d) none
69.	If $I_1=0.7083$ and $I_2=0.6970$ then $I=$ by ramberg method
	a) 0.6528 b) 0.6832 c) 0.6932 d) 0.3582
70.	Newton's forward difference formula for first differentiation is
	$\left.rac{1}{h}igg[\Delta y_n+rac{2u-1}{2!}\Delta^2y_n+rac{3u^2-6u+2}{3!}\Delta^3y_n\dots ight]$
	a) $h \begin{bmatrix} -gn & g! & -gn \end{bmatrix}$ 3! $-gn \end{bmatrix}$
	$rac{1}{b)} rac{1}{h} igg[\Delta y_0 + rac{2u-1}{2!} \Delta^2 y_0 + rac{3u^2-6u+2}{3!} \Delta^3 y_0 \ldots igg]$
	c) None
	c) None
71.	Newton's backward difference formula for first differentiation is
	$rac{1}{h}igg[\Delta y_n+rac{2u-1}{2!}\Delta^2 y_n+rac{3u^2-6u+2}{3!}\Delta^3 y_n\dotsigg]$
	a) $h \left[\Delta g_n + \frac{\Delta g_n + \Delta g_n + $
	$rac{1}{h} \left[\Delta y_0 + rac{2u-1}{2!} \Delta^2 y_0 + rac{3u^2-6u+2}{3!} \Delta^3 y_0 \dots ight]$
	<i>y</i> = 1
	c) None
	The types of function in which Simpson rule and direct integration will give the same result
is -	
72	a) Parabola b) elliptic c) Hyperbolic d) straight line
	The types of function in which trapezoidal rule and direct integration will give the same
resi	alt is
- 4	a) Parabola b) elliptic c) Hyperbolic d) straight line
/4.	What is meant by n in forward interpolation method?
	a) Number of intervals
	b) Number of datas
	c) Length of interval
	d) None of the above

75. What is meant by h in forward interpolation method?

- a) Number of intervals b) Number of datas
- c) Length of interval
- d) None of the above
- 76. The number of points of the base segment is ---- in definite integral will be obtain a) Increase b) Decrease c) constant d) none
- 77. Formula for trapezoidal rule is ---

$$\int f(x) dx \, = \, rac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 \pm - - - y_{n-1})]$$

$$\int f(x) dx \, = \, rac{h}{3} [(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots)]$$

$$\int f(x) dx \, = \, rac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + \dots) + 2(y_3 + y_6 + \dots)] \, .$$

- 78. Formula for Simpson 1/3 rule is ---

$$\int\limits_{0}^{\infty} f(x) dx \, = \, rac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 \pm - - - y_{n-1})]$$

b)
$$\int f(x)dx = rac{h}{3}[(y_0+y_n)+2(y_2+y_4+\dots)+4(y_1+y_3+\dots)]$$

$$\int f(x) dx \, = \, rac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + \dots) + 2(y_3 + y_6 + \dots)]$$

- d) None
- 79. Formula for Simpson 3/8 rule is ---

$$\int\limits_{ ext{a)}} f(x) dx = rac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 \pm - - - y_{n-1})] \ \int\limits_{ ext{b)}} f(x) dx = rac{h}{3} [(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots)]$$

$$f(x)dx = rac{h}{3}[(y_0+y_n)+2(y_2+y_4+\dots)+4(y_1+y_3+\dots)] \ \int f(x)dx = rac{3h}{8}[(y_0+y_n)+3(y_1+y_2+y_4+\dots)+2(y_3+y_6+\dots)]$$

- 80. The two point Gaussian quadrature formula is exact for polynomial up to degree -
 - a) 1 b) 2 c) 3 d) 4
- 81. The three point Gaussian quadrature formula is exact for polynomial up to degree ----

$$\int_0^{\pi} \sin^3 x \, dx = ---, \, h = \frac{\pi}{6}$$

- a) 0.972
- b) 1.305 c) **1.972**
- d) 1.299
- 83. The process of evaluating a definite integral from a set of tabulated value is ----*
 - a) Cubic b) quadrature
- c) straight line
- d) none
- 84. In Simpson 1/3 rule y is a --- of degree 2
 - a) straight line b) circle
- c) constant
- d) polynomial
- 85. In trapezoidal rule y is a --- of x
- c) quadratic

$$\int_{5}^{12} \frac{1}{x} dx = --by Gaussian 3 \text{ point formula}$$

ć	a) 0.28767	b) 0.65860	c) 0.87534	d) 0.64820
	$\int_1^2 e^x dx by { m G}$	aussian 3 r	ooint formu	la is
	a) 0.28767			
88 J	$\int_{-1}^{1} \frac{1}{x} dx$ by G	aussian tw	o point for	nula is
	a) 0 b) 1			
89	$\int_{-1}^{1} \frac{1}{1+x^2} dx \text{by}$	Gaussian tw	o point formu	la is
ć	a) 0 b) $\frac{1}{2}$	c) 3/2 d) 5/2		
90. \$	Simpson 1/3 rule	is called for	rmula	
	a) open closed			
	b) open			
	c) closed			
(d) closed open			
91.	The total area of	a normal distr	ibution betwee	en average value ± 1.96 of standard
	deviation is:	DI 43 */o	<i>CJ</i> Y870	u) 03.48%
92	· ·			g conclusion about the population based on
	sample data is kr	_	ves and drawing	5 conclusion about the population based on
	a) Descriptive st			
	b) Inferential st			
(e) Population sta	atistics		
(d) Sample satisti	ics		
93.	Statistical inferen	ce has	branches	
	a) 2 b) 4	c) 3 d) 1		
94.	Which of the following	owing is the br	anch of statisti	cal inference ?
	a) Estimation			
	b) Hypothesis te	_		
	c) Both a and b			
	d) Neither a nor		1.1	C
	The statistical esti a) Parameter	mation's possi	ble in the case	01
	a) Parameter b) Sample			
	e) Population			
	d) Random sam	ıple		
	The estimator is I	-	om as it varies	from
	a) Population to			
	b) Sample to sa			
(e) Population to	sample		
(d) Sample to pop	oulation		
97.	The process in wl	hich the true bu	ıt unknown val	ue of population parameter is computing is
1	known as			
ä	a) Descriptive st	atistic		

b)	Inferential statistic
c)	Estimation
d)	Testing of hypothesis
98.San	nple is a part of
a)	Statistical analysis
b)	Statistical inference
c)	Statistic
d)	Population
99. Sta	atistical estimation of types
a)	One b)Two c)Three d)Four
100. T	he theory of estimation is given by
a)	Fermat b) Laplace c) Fisher d) None of them
101. pa	arameter are those constants which occur in
a)	Samples
b)	Probability density function
c)	Formula
d)	None of them
102. E	stimate and estimator are
a)	Different
b)	Synonyms
c)	Same
d)	None of them
103.Tł	ne value of an estimator is called
a)	Expectations
b)	Estimate
c)	Variance
d)	None of them
104. T	he formula which is used to estimate the true but unknown value of population parameter
is	called
a)	Estimate
b)	Estimation
c)	Estimator
d)	All of them
105. T	he value obtained by applying the estimator on sample information is known as
a)	Estimator
b)	Estimation
c)	Both a and b
d)	Estimate
106. S	tatistic may be
a)	An estimator
b)	An estimate
c)	Both a and b
	None of them
107. E	stimate can be
a)	Specific value

- b) Range of values
- c) Both a and b
- d) Neither a nor b
- 108. A single numerical value which is used as an estimate of unknown parameter is known as
 - a) Population parameter
 - b) Mean estimate
 - c) Interval estimate
 - d) Point estimate
- 109. A range of values within which the true value of population parameter lies is called
 - a) Point estimate
 - b) Mean estimate
 - c) Interval estimate
 - d) None of them
- 110. An estimator is considered to be best if its distribution is
 - a) Discrete
 - b) Concentrated about the true parameter value
 - c) Normal
 - d) Normal continuous
- 111. Which of the following properties an estimator holds?
 - a) Sufficiency
 - b) Efficiency
 - c) Unbiasedness
 - d) All of them
- 112. The types of estimates are
 - a) Point estimate
 - b) Interval estimate
 - c) Estimation of confidence region
 - d) all of them
- 113. An estimator of a parametric function tau(theta) is said to be the best if is possesses
 - a) all properties of good estimator
 - b) any two properties of good estimator
 - c) atleast three properties of good estimator
 - d) all of them
- 114. An estimator 'T-n' based on the sample of size n to be the best estimator of θ if
 - a) 'P(abs(T n-theta)\gt epsi)\ge P{abs(T n^* -theta)\It epsi}'
 - b) 'P(abs(T n-theta)\It epsi)\ge P{abs(T n^*-theta)\It epsi}'
 - c) 'P(abs(T n-theta)\gt epsi)=P{abs(T n^* -theta)\It epsi}'
 - d) All of them
- 115. The bias of an estimator will be
 - a) Positive
 - b) Negative
 - c) Both a and b
 - d) None of them
- 116. An estimator whose expected value is equal to the true value of population parameter is known as

b)	unbiased estimator
c)	sufficient estimator
d)	efficient estimator
	the expected value is grater than the true value of population parameter then the estimator
-	nown as
/	efficient
/	unbiased estimator
	sufficient estimator
· ·	positively biased
	ne sample satistic s is a point estimator of
a)	· · · / · · /
	e sample mean 'bar X' is a point estimator of
a)	· · · / · · /
	he sample proportion P is
	Parameter Piaged agriganter
/	Biased estimator
	unbiased estimator None of them
	ick out the notation for sample mean and population mean*
	$ar{x}$ and s
,	$ar{x} \ and \ \mu$
,	\bar{x} and s^2
,	n and s
/	the calculated value of t exceeds the tabulated value of at 5% or 1% level of significance
	null hypothesis is*
	Accepted b)Rejected c)None
	ight tailed alternative is*
	$H_1: \mu > \mu_0$
,	$H_1:\mu_0>\mu$
- /	$H_1: \mu = \mu_0$
)	$H_1: \mu eq \mu_0$
	eft tailed alternative is*
a)	$H_1: \mu > \mu_0$
b)	$H_1:\mu_0>\mu$
c)	$H_1: \mu = \mu_0$
d)	$H_1: \mu eq \mu_0$
125.*	
	$ \angle z_lpha then$
- J	the null hypothesis.
a)	Accept
,	Reject
	neither accept nor reject
DOMO	

a) Biased estimator

d) none	
$_{126.st}$ If $ Z >z_{lpha}$ $then$	
	the null hypothesis
a) Acceptb) Rejectc) neither accept nor rejectd) none	
 127. Critical value depends on* a) level of significance b) alternative hypothesis c) both d) none 	
 128. In all probability a standard no a) -2 and 2 b) -4 and 4 c) -5 and 5 d) -3 and 3 	ormal variate to lie between*
129. A coin is tossed 144 times and one?*	l a person gets 80 heads. Can we say that the coin is unbiased
a) Biased b) Unbiased	c)none
130. When the size of the sample n	30, then that sample is called a small sample.*

- a) greater than
- b) greater than or equal to
- c) less than
- d) less than or equal to

131. When the size of the sample n 30, then that sample is called a large sample.*

- a) greater than
- b) greater than or equal to
- c) less than
- d) less than or equal to

132. If the calculated value of t is less than the tabulated value of at 5% or 1% level of significance the the null hypothesis is*

a) Accepted b) Rejected c)None

133. If the standard deviation of a sample is given directly the the statistic is given by*

$$t = \frac{\bar{x} - \mu}{\frac{s^2}{\sqrt{n}}}$$

$$t = \frac{\bar{x} - \mu}{\frac{s^2}{\sqrt{n-1}}}$$

$$t = \frac{\bar{x} - \mu}{\frac{S.D}{\sqrt{n-1}}}$$

134. Pick the degrees of freedom of student's t- test for single mean*

- a) **n-1**
- b) n-m-1
- c) n-2
- d)n-m-2

135. Write the formula for to test the significant difference between two means x and y of two sample sizes*

$$t=rac{x-y}{s\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \ t=rac{x-y}{\sqrt{s^2\Big(rac{1}{n_1}+rac{1}{n_2}\Big)}} \
ho)$$

- c) Option 2both a and b
- d) none

136. Pick the degrees of freedom of student's t' test for difference of means*

- a) $n_1 + n_2 1$
- b) $n_1 + n_2 + 2$
- c) $n_1 + n_2 2$
- d) $n_1 + n_2 + 1$

137. To if the two samples have come from the same population then we use*

- a) t-test **b) F-test**
- c) chi-square test
- d)none

138. We will take greater of the variances S_1^2 or S_2^2 in the numerator and adjust for the degrees of freedom accordingly

$$F = rac{Smaler\,variance}{Greater\,variance} \ {
m b)} \ F = rac{Greater\,variance}{Smaler\,variance}$$

c) None

139. In F-test*

- a) $S_1^2 \leq S_2^2$
- b) $S_1^2 > S_2^2$
- c) $S_1^2 \geq S_2^2$
- d) None

140. Pick the degrees of freedom for chi-square test of goodness of fit*

- a) n+1
- b) n+m-1
- c) n-1
- d) n-m-1

141. The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. What is the expected frequency?*

- a) 20
- b) 30
- c) 40
- d) 10

- 142. Observed frequencies are 1026, 1107, 997, 966, 1075,933, 1107, 972, 964, 853. What is the expected frequency?*

 a) 10 b) 100 c) 1000 d)10000

 143. Observed frequencies are 14, 18, 12, 11, 15, and 14. What is the expected frequency?*

 a) 11 b) 12 c) 13 d) 14

 144. Pick the degrees of freedom for chi-square test for independence of attributes.*

 a) (r-1)(s-2) b)(r-2)(s-1) c)(r-1)(s-1) d)(r-2)(s-2)
- 145. Tabulated value of chi-square test for 1 degrees of freedom at 5% level of significance is a) 2.90 b)3.12 c) 3.84 d)4.88
- 146. Tabulated value of chi-square test for 5 degrees of freedom at 5% level of significance is a) 10.07 **b)9.488** c)7.851 d)11.07
- 147. Tabulated value of F- test for (6, 5) degrees of freedom at 5% level of significance is*
 a) 6.26 b)6.16 c) 5.05 d)4.95
- 148. Tabulated value of F- test for (3, 10) degrees of freedom at 5% level of significance is*
 - a) 3.86
 - b) 3.48
 - c) 3.71
 - d) 3.59
- 149. Tabulated value of t- test for 9 degrees of freedom at 5% level of significance is*
 - a) 2.306
 - b) 2.262
 - c) 2.228
 - d) 2.365
- 150. IF Observed frequency are 14, 18, 12,11,15,14 and expected frequency is 14. Find chi-square value*
 - a) 1.143
 - b) 2.143
 - c) 3.143
 - **d)** 4.143

S.NO.	ANS.								
1	d	31	a	61	С	91	b	121	b
2	c	32	b	62	b	92	a	122	a
3	a	33	c	63	c	93	c	123	a
4	d	34	b	64	a	94	d	124	c
5	b	35	d	65	b	95	b	125	a
6	b	36	b	66	c	96	c	126	b
7	a	37	c	67	a	97	d	127	b
8	a	38	a	68	b	98	b	128	d
9	b	39	c	69	c	99	c	129	b
10	b	40	a	70	a	100	b	130	d
11	c	41	a	71	c	101	a	131	b
12	d	42	С	72	d	102	b	132	b

							1		
13	c	43	a	73	a	103	c	133	a
14	c	44	c	74	a	104	d	134	a
15	c	45	b	75	c	105	С	135	b
16	a	46	a	76	a	106	С	136	a
17	c	47	b	77	a	107	d	137	b
18	a	48	b	78	b	108	С	138	b
19	b	49	a	79	c	109	b	139	a
20	a	50	d	80	с	110	b	140	c
21	c	51	c	81	с	111	d	141	b
22	a	52	c	82	с	112	d	142	c
23	b	53	a	83	b	113	a	143	b
24	a	54	b	84	d	114	b	144	c
25	b	55	c	85	a	115	С	145	c
26	c	56	a	86	С	116	b	146	b
27	c	57	a	87	b	117	d	147	c
28	b	58	c	88	a	118	a	148	c
29	a	59	c	89	c	119	b	149	c
30	b	60	c	90	b	120	с	150	c