
Cloud Native LLM Gateway
​
Author:
- dsun20@bloomberg.net
- yweng14@bloomberg.net

Shared with dev@kubernetes.io for commenter
Shared with wg-serving@kubernetes.io for editing

Background
The field of natural language processing (NLP) has undergone a transformative shift with the
emergence of Large Language Models(LLM). These sophisticated AI Models, such as GPT,
Gemini, Llama, and others have changed the way businesses interact with and process textual
data. In addition to the well-known models, new models from organizations and researchers
emerge continuously, including smaller-scale LLMs and customized variations addressing
specific industry demands.

Within this dynamic landscape, many companies are opting to engage with multiple LLM
providers when selecting models for their applications.

●​ Mitigate the risk of dependency on a single provider
●​ Access to specialized capabilities
●​ Comparison across different models and providers to optimize speed, cost-effectiveness,

accuracy, and scalability
●​ Using multiple providers, a company can stay agile and adapt to changes in technology

and market demands
●​ Redundancy and failover: company can minimize the downtime, ensuring uninterrupted

access to the LLM capabilities.

A LLM gateway can act as a critical intermediary with a single unified API, channeling requests
to the LLMs providers. It can also perform essential post-processing, and safety checks of the
LLM interactions. The primary advantages of deploying a robust LLM gateway includes:

●​ Streamlined integrations to diverse LLM providers with unified API without needing user
to learn the manage each provider’s idiosyncrasies

●​ Improved model accessibility, registering a new LLM model without significant
operational overhead with a plugable gateway architecture

●​ Scalable and efficient operations with built-in resilience and minimized downtime
●​ Strengthened security measures to ensure that sensitive information is securely

controlled before it leaves the customer’s environment

mailto:dsun20@bloomberg.net
mailto:yweng@bloomberg.net
mailto:dev@kubernetes.io
mailto:wg-serving@kubernetes.io

●​ LLM gateway can track performance and operational metrics for each deployed model
with centralized LLM monitoring for response accuracy, latency, throughput and cost.

Existing Landscape
​
By researching the existing landscape for LLM gateway, there are a few interesting projects:

LiteLLM:
https://www.litellm.ai/ is a python-based LLM gateway that is easy to use and stands up locally. ​

Pros:

●​ The project is lightweight, and friendly to Python developers.
●​ Supports a rich set of features.

Cons:

●​ Any configuration changes requires redeploying the Gateway, such as routing and model
configurations.

●​ Features like SSO, JWT Auth, and guardrail integrations are under the enterprise
license.

●​ Dedicated slack support is under enterprise license.

Kong AI Gateway:
https://konghq.com/products/kong-ai-gateway is an enterprise AI gateway which extends the
traditional API gateway by implementing the additional AI plugins such as rate limiting,
request/response transformation and prompt templating.

Pros:

●​ AI features can be implemented via gateway plugins
●​ Supports a rich set of features.
●​ APIs are both declarative(YAML) and imperative(REST API)

Cons:

●​ Advanced features like rate limiting and content safety are under the enterprise license.
●​ Unified API incompatible with OpenAI schema.
●​ Limited set of providers supported - no bedrock/sagemaker/google ai studio/vertex

ai/databricks/etc.
●​ Limited set of parameters supported - no tool calling, vision processing, etc. - Link
●​ Cannot load balance multiple deployments of same model

https://www.litellm.ai/
https://docs.litellm.ai/docs/enterprise
https://docs.litellm.ai/docs/enterprise
https://konghq.com/products/kong-ai-gateway
https://docs.konghq.com/hub/kong-inc/ai-proxy/configuration/#config-model-options

●​ Cannot setup fallbacks across providers

Relationship to Kubernetes Ecosystem
●​ Envoy proxy is commonly used for implementing the API gateway which provides

features like load balancing, resilience and rate limiting. Service discovery is a key
component of envoy which uses a layered set of dynamic configuration APIs. The layers
provide dynamic updates such as host information, backend clusters, listening sockets,
HTTP routing, and cryptographic items. These features are critical for implementing the
LLM gateway to allow adding new LLM models or configurations without interruptions.

●​ Projects like Envoy Gateway can be leveraged to implement LLM gateway on top of with
its pluggable architecture to implement AI plugins and at the same time enjoy all the
benefits gateway API provides.

●​ The LLM gateway can be deployed in the Kubernetes environment to leverage all the
benefits Kubernetes provides but should not be strictly required.

Goals:
●​ Define the scope of the functionalities of LLM gateway
●​ Align with the Kubernetes ecosystem for what can be leveraged to build LLM gateway

with a pluggable architecture to support the following personas.

Non-Goals:
●​ Fine-tuned models with LoRA

Personas:
We define 3 main personas that will interact with the LLM Gateway:

1.​ Inference platform admin (e.g., a customer’s MLOps team): wants to manage sets of
LLM serving workloads efficiently.

2.​ Payments teams: needs to track per user/tenant model-token usage for billing
purposes.

3.​ Safety teams: needs to be able to design, experiment, and enforce new content safety
policies uniformly across all

https://gateway.envoyproxy.io/

Requirements
Compared to the traditional API gateway such as envoy gateway, LLM gateway requires AI
specific features like token based rate limiting, prompt data transformation and LLM provider
routing. The traditional API gateway has already implemented most of the basic features,
implementing the LLM gateway from scratch is going to reinvent a lot of the wheels, hence we
are proposing a way to extend the existing API gateway and add the AI specific features on top.

Envoy can be extended by using proxy-wasm sdk to implement the AI plugins such as request
transformation, metrics collection.​
https://github.com/tetratelabs/proxy-wasm-go-sdk

Multi-LLM Provider
LLM from different providers may have different model architectures and compatibility
requirements. LLM gateway can act as a centralized infrastructure component, providing
abstraction layers and translation services to facilitate interoperability among various LLM
providers.

The core of the LLM gateway is the ability to route LLM requests to various providers with a
unified API without needing the end user to learn each provider’s idiosyncrasies .

●​ LLM applications are shielded from LLM provider API specifics, promoting code
reusability.

●​ LLM gateway can give organization a central point of governance and observability over
LLM data and usage.

https://gateway.envoyproxy.io/
https://github.com/tetratelabs/proxy-wasm-go-sdk

Each provider can have following configuration and can be defined as a custom resource
“LLMBackend”:

●​ Provider name: openai, azure, anthropic, cohere, mistral, kserve
●​ Supported API endpoints: v1/chat/completions v1/completions
●​ Auth Configurations: e.g azure managed identity, OpenAI API key
●​ Model name
●​ Options: streaming, upstream url/path
●​ Logging: token statistics or payload​

kind: LLMBackend​
metadata:​
 name: kserve-mistral ​
spec:​
 provider: kserve​
 model: mistral​
 format: openai​
 streaming: true​
 logging:​
 log_token_statistics: true​
 log_payload: true ​
 upstream_url: https://mistral.kserve.io/v1/chat/completions​
​
​
kind: LLMBackend​
metadata:​
 name: azure-gpt ​
spec: ​
 provider: azure​
 model: "gpt-35-turbo"​
 format: openai​
 streaming: true​
 AuthOptions:​
 azure_instance:​
 azure_deployment_id: ​
 logging:​
 log_token_statistics: true​
 log_payload: false

Traffic Management
Traffic management involves the strategic routing, filtering and monitoring the request and
response between LLM applications and downstream LLM providers/APIs such as OpenAI,
Llama, AWS Bedrock or Anthropic.

The LLMRoute resource allows users to configure the LLM routing by matching the HTTP traffic
and forwarding to the corresponding LLM backend. It should work the same way as Kubernetes
Gateway API that the route configurations are dynamically updated to the LLM gateway without
having to restart the gateway.

●​ Load balancing across multiple model providers
○​ Load balancing across multiple instances from different providers for the same

model
■​ "simple-shuffle", "least-busy", "usage-based-routing",

"latency-based-routing"

apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute​
metadata:​
 name: mistral-routing​
spec:

 rules:​
 - matches:

 - path:

 type: prefix

 Value: /mistral

 backendRefs:​
 - group: serving.kserve.io/v1alpha1​
 kind: LLMBackend​
 name: kserve-mistral

 - group: serving.kserve.io/v1alpha1

 kind: LLMBackend

 name: bedrock-mistral

apiVersion: gateway.networking.k8s.io/v1​
kind: BackendTrafficPolicy​
metadata:​
 name: mistral-lb​
spec:​
 targetRef:​

http://serving.kserve.io/v1alpha1

 group: gateway.networking.k8s.io/v1​
 kind: HTTPRoute​
 name: mistral-routing​
 loadBalancer:

 type: leastRequest #usage-based-routing, latency-based-routing

●​ Fallback, timeout and retries across multiple model providers

○​ Fallback to a different provider if the call fails after a number of retries

apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute​
metadata:​
 name: mistral-routing​
spec:​
 rules:​
 - matches:​
 - path:​
 type: prefix​
 value: /mistral​
 backendRefs:​
 - group: serving.kserve.io/v1alpha1​
 kind: LLMBackend​
 name: kserve-mistral​
​
apiVersion: gateway.networking.k8s.io/v1​
kind: BackendTrafficPolicy​
metadata:​
 name: mistral-retry​
spec:​
 targetRef:​
 group: gateway.networking.k8s.io/v1​
 kind: HTTPRoute​
 name: mistral-routing​
 retry:

 numRetries: 5

 retryOn:

 httpStatusCode:

 - 429

 fallback:

 backendRefs:​
 - group: serving.kserve.io/v1alpha1​
 kind: LLMRoute​

 name: bedrock-mistral

●​ Advanced routing strategies:
○​ Rate limiting aware

■​ filter out the deployment if tpm or rpm is exceeded
■​ Route to the deployment with lowest tpm or rpm

Rate Limiting
Rate limiting is a feature that allows the user to limit the number of tokens in the incoming LLM
requests to a predefined value to prevent DDoS attacks and prevent the LLM providers from
getting overloaded. The LLM gateway can support both request based rate limiting and token
based rate limiting.​
​
​
For token based rate limiting LLM gateway uses the following statistics to calculate the token
metrics.

●​ Total Tokens: The total number of tokens including both prompt and generated
completion

●​ Prompt token: The tokens provided by the user as input to the LLM
●​ Completion tokens: The tokens generated by the LLM in response to the prompt

The configured rate limiting:

apiVersion: gateway.networking.k8s.io/v1​
kind: BackendTrafficPolicy​
metadata:​
 name: rate-limiting-mistral​
spec:​
 targetRef:​
 group: serving.kserve.io/v1alpha1​
 kind: LLMRoute​
 name: mistral-routing​
 rateLimit:​
 type: Global​
 global:​
 rules:​
 - clientSelectors:​
 - headers:​
 - name: x-claim-name​
 value: John Doe​
 limit:​
 tokens: 300​

 unit: Minute

When rate limiting is enabled, LLM gateway sends additional headers back to the LLM
application indicating the allowed limits, how many requests are available and how long it will
take until the quota is restored.

X-RateLimit-Limit-30-azure: 1000

X-RateLimit-Remaining-30-azure: 950

If any of the limits configured have been reached, LLM gateway returns an HTTP/1.1 429 status
code to the client with the following JSON body:

{ "message": "API rate limit exceeded for provider azure, cohere" }

Metrics​

The LLM gateway should produce standard LLM latency, token metrics as documented in

​[External] Standardizing Large Model Server Metrics in Kubernetes

total_tokens{reporter=”llm-gateway”, provider=”mistral”, model=”mistral-tiny”,
temperature=”0.2”}

LLM Gateways in the Ecosystem
A number of groups have already begun either implementing LLM Gateways by extending the
Gateway API or have their own internal gateways. They are listed below for reference. If you
know of others, please add them to the list.

-​ Gloo AI Gateway
-​ Kong AI Gateway
-​ LiteLLM
-​ Cloudflare AI Gateway
-​ IBM AI Gateway
-​ MLFlow AI Gateway
-​ AI Gateway
-​ PortKey AI Gateway

https://docs.google.com/document/d/1SpSp1E6moa4HSrJnS4x3NpLuj88sMXr2tbofKlzTZpk/edit?resourcekey=0-ob5dR-AJxLQ5SvPlA4rdsg#heading=h.qmzyorj64um1
https://docs.solo.io/gateway/main/ai/overview/
https://konghq.com/products/kong-ai-gateway
https://docs.litellm.ai/docs/
https://developers.cloudflare.com/ai-gateway/
https://www.ibm.com/products/api-connect/ai-gateway
https://mlflow.org/docs/latest/llms/gateway/index.html
https://www.aigateway.app/
https://github.com/Portkey-AI/gateway

-​ Google AI Gateway
-​ Azure GenAI Gateway
-​ AWS AI Gateway (more a use case)

Open Questions:
Is the goal of this proposal to define a set of standards that are resources for building an
LLM Gateway API, of which there can be many compliant controller implementations,
similar to the Gateway API for Ingress, or is it to extend an existing gateway
implementation, such as Envoy Gateway, to support the features defined in this doc?

These are not necessarily mutually exclusive goals. However, I think we should be very clear
about what we are proposing and in what order, as they could be concurrent or sequential
efforts if we decide both make sense. Personally, I think we should drive them in parallel.

Creating an initial prototype implementation using Envoy Proxy would:

-​ help ground our thinking for what a more general standard might look like
-​ come together much faster than designing and building consensus around a standard;

thus, allowing us to meet *some* user's needs sooner, assuming there's actually a
strong signal for this at the moment.

Designing an LLM Gateway API standard would:

-​ open the door for more implementations as Envoy only serves a subset of users
-​ allow for continued requirements gathering from users and input from the relevant SIGs

(network, others?)

Supposing we decide to put energy into the "standard setting" route, then we should liaise with
the Gateway API SIG. They are about to embark on a post-mortem to gather lessons learned
from building the Gateway API and then synthesize those into an initial "Best practices for how
to build an official, yet out-of-tree, 'Kubernetes Certified Extension'." We'd be remiss not to tap
such wisdom before barreling ahead.

Meeting Notes:

June 26, 2024

●​ Initial discussion in the Envoy gateway community meeting
○​ Envoy Gateway Community Meeting
○​ Extend envoy gateway to implement AI specific features such as token based

rate limiting, payload transformation, prompt control. Suggested to create a
repository for common AI plugins.

https://docs.google.com/document/d/1leqwsHX8N-XxNEyTflYjRur462ukFxd19Rnk3Uzy55I/edit
https://cloud.google.com/api-gateway?hl=es
https://github.com/Azure-Samples/AI-Gateway?tab=readme-ov-file
https://aws.amazon.com/blogs/machine-learning/create-a-generative-ai-gateway-to-allow-secure-and-compliant-consumption-of-foundation-models/

■​ https://gateway.envoyproxy.io/contributions/design/envoy-extension-policy/
■​ https://gateway.envoyproxy.io/latest/tasks/extensibility/ext-proc/

○​ Advanced routing features such as fallback, latency based routing can be
implemented in envoy gateway itself.

https://gateway.envoyproxy.io/contributions/design/envoy-extension-policy/
https://gateway.envoyproxy.io/latest/tasks/extensibility/ext-proc/

	Cloud Native LLM Gateway
	Background
	Existing Landscape
	LiteLLM:
	Kong AI Gateway:

	Relationship to Kubernetes Ecosystem
	Goals:
	Non-Goals:
	Personas:
	Requirements
	
	Multi-LLM Provider
	Traffic Management
	Rate Limiting
	Metrics​

	LLM Gateways in the Ecosystem
	Open Questions:
	Meeting Notes:

