
#169 - MFA Mishaps
​[00:00:00]

[00:00:00] G Mark Hardy: Hello and welcome to another episode of CISO
Tradecraft, the podcast that provides you with the information, knowledge, and
wisdom to be a more effective cybersecurity leader. My name is G Mark Hardy.
I'm your host for today, and we're going to be talking about multi factor
authentication mishaps, or MFA mishaps for short.

If you're following us on LinkedIn, great. If not, please go ahead and do so.
Subscribe to your favorite podcast channel. And please subscribe to our
YouTube page because you get to get this plus a whole lot more. Now, before
we get into the MFA mishaps, let's go through a quick review of multi factor
authentication.

And back on episode number 74 called Pass the Passwords, we went over eight
different types of authentication methods that were listed in Daniel [00:01:00]
Meisler's CASMM, or the Consumer Authentication Strength Maturity Model.
Now going from worst to best, we had at layer one, shared password. Use the
same password multiple places across the internet.

Yeah, right, but it happens. Number two, unique passwords. But they might be
short, they might be simple, and they might contain personal information that
could be guessed. Number three, quality passwords. They're not just unique, but
they're long, random, and they include special characters. But there's still
password dumps and cracking that could be used against something like that.

Now, if you go to a password manager at level four, in addition to having unique
passwords, you also store them securely in an encrypted archive. Well, there's
account reset or takeover, and we've seen Incidents with at least one of these
companies, and I'm not going to mention them by name, that at least for one of
my clients, we decided to move away from them based upon some of our
concerns about the liabilities and the password manager.

Well, that's level four. Level five would be the SMS based two factor
authentication codes. Hey, you get [00:02:00] something that comes in on your
telephone, and in addition to multi factor authentication codes, on the phone,
you get the sense that, Hey, it's got to be your phone. Well, of course it could be
phished and we'll talk about that.

How someone could actually get your code that way by convincing you to give
it to them, but also SIM swapping, where somebody calls up socially engineers,
a person at the telephone company and says, Hey, my name is G Mark and I just
got a new phone. I need to have a new SIM, blah, blah, blah, blah, blah.

Okay. So it's better, but it's still not perfect. Number six, you have app based.
Two factor authentication codes. And so now it's generated by an application
like the Google Authenticator, the Microsoft app. So now when it's requires a
code, I have to go ahead and consult my phone. Click, click, click, click, click,
click.

But again, phishing or even potentially malware could compromise that. Now
we're at layer seven, where we have an. app based codeless two factor
authentication. And now it's going to prompt you to accept or deny an
authentication attempt. And Microsoft has moved from beyond that just accept
or deny to be able to go ahead and actually push out a two digit code, which you
have to [00:03:00] then reflect in here.

So you gotta be looking at it and seeing it here and it'll give you a map. So if
you say, yeah, this is not where I'm at. Maybe the person will say no, but again.
There's some ways that you can spoof people, and I'll tell you about that. And
finally, at layer eight, if you will, the pass less. In addition to managed
passwords, your two factor authentication comes from some physical token or
some built in trust center.

And now you have a much higher level of availability. But there's still a
possibility of things going wrong. And so that's, we're going to talk about a little
bit about how could things go wrong. The key takeaway from the episode that
we did way back when, when you take a look again at episode number 74, pass
the passwords, was that passwords and multi factor authentication methods are
not considered equal.

In terms of security. Now, granted, there's going to be a risk with any
authentication method, even passwordless. Well, I'm not convinced now. Last
one, one of my coworkers dropped a client laptop protected by a YubiKey and
the key itself, well, it snapped in two. And so [00:04:00] he walked into my
office, because a couple hours you had been locked out of the client machine.

And you have to FedEx it back to get reconfigured for the security settings. And
they have a backup. So he said, G Mark, do you have a YubiKey? And
coincidentally, I had just ordered. Two of them. And so I pulled one on my

backpack, still in the wrapper, and said, here you go. So that was kind of a just
in time good luck.

He was able to initialize that new key while still authenticated. And my C and
CISO became a cape for being the hero for that day. Now note that our client in
this case had opted for level eight in this authentication strength maturity model.
That's kind of the top of the line. Not so bad, but it got me thinking, well, why
don't we roll out YubiKeys to all of our users?

Well, this time, instead of using the kinds that could snap off, there's little
stubby ones they call a nano. So there's nothing to break. Then I got to thinking
that, you know, all Windows 11 machines require a trusted platform module or a
TPM. And so that's why if you check for updates on an older Windows 10 box,
you'll get a message.

This PC doesn't currently meet the [00:05:00] minimum system requirements to
run Windows 11 and therefore they want you to go ahead and buy more, bigger
PC. Now usually it's the lack of a TPM that's going to trigger this alert. Now
Microsoft has announced that Windows 10 will reach end of support on October
14th, 2025.

with their current version, 22H2, being the final version. Now, unless you think
Microsoft is moving too quickly, their support for Microsoft Windows 10 will
have lasted over a decade. Now, note the customers who subscribe to the long
term servicing channel release, which will update every three years, not every
six months, may have a longer runway.

But my research has shown that the LTSC, as it's called, is not common in
enterprise deployments because of the fixed but, well, reduced functionality. I
remember up until just last year when I would go to visit my Uncle Ron, that
they still had Windows XP devices that were running because it's kind of like a
medical thing where they keep track of stuff.

Doesn't communicate to the internet, doesn't go browse and things such as that.
So sometimes there are situations where you can maintain a system, [00:06:00]
particularly like in medical, where you let it run a long time. And if it works,
don't fix it. Well, we're not going to go to that. We're looking at enterprise
solutions, such as which most likely you're dealing with.

So let's go back to the question about using a TPM for authentication. It seems
that if you have a TPM in every device, why don't you use that to authenticate?
And bing, you're at level eight. But wait, not so fast, because there is a

difference between a Trusted Platform Module, this TPM, and a Hardware
Security Module, or HSM.

And therein, I believe, lies the answer. Now, if we take a look, a specialized
hardware chip known as a TPM, Trusted Platform Module, is embedded into a
computer's motherboard to store cryptographic keys used for encryption
securely. Okay? And the TPM offers secure storage for cryptographic keys and
certificates.

Allows for secure boot, can generate cryptographic keys, and even provide
remote attestation to a system's integrity. Well, so far so good. On the other
hand, a hardware security module is the device [00:07:00] that you can add to a
system to manage, generate, and securely store cryptographic keys. An HSM
can manage cryptographic keys throughout their lifecycle, can do hardware
encryption, that is go faster, and has tamper resistant hardware to resist physical
attacks.

So, now I'm learning that the difference, primary difference between a TPM and
HSM is that a TPM focuses primarily on security of the platform. and ensuring
system integrity. Whereas a hardware security module, or HSM, safeguards
cryptographic keys and offers hardware based protection. And it's that latter that
we want to achieve this Level 8 on our Consumer Authentication Strength
Maturity Model.

So at the end of the day, just buying a new laptop can help you secure your hard
drive, but doesn't offer the type of validation. an authentication we would want
from an HSM. Now, if you know of a manufacturer that builds in an HSM at the
factory, please send me a note on LinkedIn and I want to go ahead and update
my notes.

[00:08:00] If you want to experiment with hardware security modules and you
also have the appropriate rights and permissions, you can enable FIDO Security
Key in Azure. Go to the Home, Security, Authentication Methods. Policies
menu. A little box you can click and turn on. Now note that Microsoft states,
quote, FIDO2 security keys are a phishing resistant, standards based,
passwordless authentication method available from a variety of vendors.

That's a mouthful. But FIDO2 keys are not usable in the self service password
reset flow. Think about that if you're using the SSPR. Now, by the way, for your
500 point Hacker Jeopardy question, what does FIDO stand for? It's Fast
Identity Online. And the standards are at the FIDO Alliance webpage if you
want to dig into the details.

All these references you'll find in our show notes. Now, usually, HSMs in the
form of FIDO security keys are reserved for enterprises that have the money to
buy more stuff and are willing to configure and manage their systems to use
them. [00:09:00] But what about the rest of us who don't have the budget or the
staff or even a mandate to do so?

Do we have to? Settle for something else that perhaps is less robust, but it might
meet our risk tolerance. Now, if you start by choosing an inferior authentication
method that does not meet your risk tolerance, you're potentially placing your
organization in harm's way.

So, for example, It's not uncommon to see email used as a second factor for
authentication in websites. The user experience looks something like this. First,
you log into a website with your username. It says, please provide the secure
code that we just sent to the email on file. You then check your email and copy
paste or provide the code proving that you have access to the email address.

Then the website asks you to provide the password to the site to log in and after
that, bing, you're in. And that seemed like a pretty good okay approach at first
glance. The website captures a username and a password, which would be the
first factor, something you know, as well as proof that [00:10:00] someone has
access to the email box, which is the second factor.

So technically two factors, something I know and something I have, which is
access to the email box. What could possibly go wrong? Well, one example I
remember is when DFAS rolled that out, Defense Finance and Accounting
Service. So if you're in the military, you know what DFAS is because that's
where you get your paycheck.

And I remember when they turned that on, they would have an MFA code. And
they said, sign up for this. You get an MFA code and it was good for 10
minutes. But it took 20 minutes to send. And so in that particular case, if you
signed up for the telephone version, cause you thought that was better, you
realize that, yeah, no, this isn't helping because I can't get in.

And I kept trying for weeks. Finally, I think I had to make a help desk call or I
got lucky and it came in with like a couple of seconds on the clock, but make
sure your systems are responding fast enough if you're going to time out. These
authentication tokens, because otherwise you're going to lock out the users.

GoDaddy did that when they first set things up. I got locked out because I
signed up for their MFA and it would take them longer to send the MFA

[00:11:00] credential than it was for the duration of that MFA credential. And
for a few days, I couldn't go in there and update my website. Eventually they fix
that, but you don't really want to create a denial of service attack on your users
under the guise of security.

Cause then it's really kind of working at cross purposes to what you want to do.
And as you know, as the listeners of CISO Tradecraft, we say that security is in
the business of revenue protection, not reduction. So let's take a look at how an
attacker might bypass an MFA email solution. A bad actor might first trick a
customer into providing their email address username and password to their
email box by creating a fake login page that looks like Yahoo or Gmail or
whatever they're using,

so, for example, they'll phish the user by sending a text message saying, no, this
is. Gmail. We've recently detected someone trying to log into your account from
an unknown IP address. And if this wasn't you, please log in to change your
password. Okay, well, there you go.

You're going to log into their fake site. And now they, once they've stolen your
email account credentials, they can log in and start reading your emails.
[00:12:00] And they might see an email from a company that says, for example,
here's a core credit. Please use it before it expires. Or buy this or an invoice for
some other site or some Amazon receipt, whatever.

So the attacker goes to your company website, but realizes you don't know the
username and the password. Does that mean that if our customer's email
addresses are compromised or MFA email solution remains secure from bad
actors? Well, not necessarily because it's common for a company or a merchant
website to have a forgot my password option.

We only need to provide an email address to get a link that you can click on to
reset your password. And if that's the case, the bad actor will find that link and
click reset my password. And now the bad actor controls the email address.
They're going to choose a new password, which A locks you out. But then they
can spend those unused store credits, order merchandise, ship them to a drop
location, or do any number of possibilities, because they're, well, they're in as
you.

And they're not going to necessarily trigger any alarms that are going to say
suspicious user because, well, [00:13:00] you're a legitimate user and you're
kind of doing what you would normally be doing. buying stuff or, or making
transactions or et cetera. Now the other thing is that to make sure that you as a

regular user, because sometimes they don't completely reset everything, they'll
delete the change password email from the inbox.

So you don't even know what happened because from time to time, you might
have your regular box on your laptop and also on your cell phone. You can
check your email. If you don't see anything that would make you suspicious
when it comes to periodic reauthentication, you're not going to get back in. So
that's one of the moves from the fraudster playbook.

Now, granted, some websites don't offer alternatives, but in general, I encourage
users not to choose email as a second factor unless they have MFA protection on
their email account. And now an attacker with a stolen credential still needs to
go ahead and compromise your multifactor authenticator, which raises the bar
significantly.

Now, let's look at other ways that MFA can go bad. Imagine that you have the
money and you bought YubiKeys for everybody in your organization. And you
configured login to [00:14:00] require this FIDO2 compliant passwordless
authentication token. Now we're at level 8. Everything's good, right? We'll
always think, what could go wrong?

Other than, as they say, the one user who accidentally dropped his laptop kind
of on the corner. It wasn't a big drop, enough to snap off that YubiKey and break
it. It was locked out. Common attack that can be used by bad actors is to use a
tool like EvilProxy, phishing as a service. which allows them to man in the
middle until they steal a session cookie.

This is called doing a reverse proxy and the tackle looks something like this.
And I've got the link to, resecurity. com on our notes. Number one, the user will
put their password ID and password into the phishing site. Attacker grabs that,
and then goes ahead and logs into the real site. At which point, the website
comes back and says, Hey, you need to MFA.

And so it goes back to you and says, Hey, you need to MFA. And maybe, beep,
beep, beep, beep, beep, beep, beep, out comes this message even to their phone.
The user dutifully enters in their [00:15:00] MFA into the fake site, which is
then goes right over to the attacker, who says, Thank you very much. And
because you're still within the 30 or 60 second lifetime of that, enters in the
MFA.

And they're in and, now they've got a session cookie and they're off and
running. And now you can redirect the user to take them, throw them off the

trail to say. Oops, server busy, or please, please try again, or something like that,
that it's going to look plausible enough that you go, Okay, fine. Try it a second
time.

I'm in. Good. And the user doesn't know that you've coughed up that credential
and the attacker is in. Now here's an important question in a scenario like this.
Do you have any observability to see that the IP address may have changed
from the victim to the IP address of the bad actor? User tries to log in, they get
their creds popped, bad guy comes in from some other location, and then if you
do, do you instantly log out the account if you see that IP change?

Well, if you do, great, you've stopped this attack, but then you've created
another problem. You see, changing [00:16:00] IP addresses is common on
mobile phones. For example, there might be somebody, one of your users in
New York City, who's riding the subway to and from work, or the train, or
things such as that, and as you're coming into the city, you're doing that, you're
going to your website on your phone, and that phone is jumping from various
cell phone towers.

which means it's also going to be changing IP addresses. And if you log them
out because their IP address has changed and for no other reason, then you're
really providing a poor customer experience. However, if you don't log them
out, then you just allowed a viable attack of stealing session cookies into your
customer experience.

So pick your poison. Now we're starting to see why security can be kind of
tricky. When I first heard of the scenario, I thought, well, why not look for
impossible travel? For example, your user jumps from Manhattan to Moldova.
Well, two things that could complicate that, that would be VPNs and IPv6.

Now, if an attacker is sophisticated and is specifically targeting a particular high
value user, happens, they could use a VPN to establish a nearby point of
presence that [00:17:00] looks plausible to your impossible travel rule. Hey,
they went from Manhattan. Maybe the Bronx. Okay, fine, close enough. Or
Manhattan to Manhattan.

There's an awful lot of points of presence you can have there. Secondly,
geolocation with Microsoft for IPv6, and my observation has been notoriously
bad. I see users in D. C. with their cell phone and IP address, and that IPv6
location is labeled by Microsoft and Azure as far away as Massachusetts
sometimes, and they're right there.

And I don't see that with IPv4. It's pretty well understood, and I think we've got
the geographic boundaries locked in, but any cell phone or its associated
hotspot, more than likely, is IPv6, and it's going to land you inside this cone of
confusion, and it's going to break that rule of knowing where you're at.

So, if you've found a solution to that, please let me know. All right, let's
continue with the ransomware playbook. Now, once the attacker has logged into
your Microsoft network, what are they going to do? You go after admin
credentials, right? That's where the jackpot is. So they might find a weakness in
[00:18:00] your Active Directory configuration settings, which allows them to
get domain admin credentials.

And then the bad actors might go to your Azure Active Directory account,
which is now called Microsoft Entra ID, and start changing some things. So,
think about what a bad actor would do if they got in and they think maybe
there's a clock running. First, add a Microsoft Conditional Access Policy. It says
all future logins for anybody in the company, including admins, need to come
from the Bad Actor's IP address range.

Now this simple conditional access policy means that everybody, except the
Bad Actor, will fail at all future Active Directory logins. Oops, that's not so
good. And additionally, now the Bad Actor can close all existing sessions.
Therefore, every application in your organization which uses your single sign on
will fail.

in the conditional access policy check. The bad actor has single sign outed your
organization. And use conditional access policies to begin your nightmare. Well,
we call that Single Sign Out Loss, or SSOL. So, if this happens to [00:19:00]
you, you're SSOL. Now, what's worse is, the bad actor Single Sign On continues
to work, so they can continue to log into things.

Now, have you thought about that exercise at your tabletop or your incident
response plans?

Have you ever had a conversation with your Microsoft representative to discuss
how Microsoft might respond if you ask them to override your Entra conditional
policies or remove your admin accounts? Will Microsoft respond to you in a
timely manner? Will they, how will they know it's you? How will they
authenticate you and differentiate from an attacker who's calling in trying to
socially engineer them?

What if the bad actor also deletes every YubiKey that's registered in the
company? Have you thought how hard it might be to Purchase new YubiKeys,
get them all re enrolled for thousands of users during a ransomware event. See,
in these scenarios, bad actors are now using your greatest strengths against you.

Now, here's a little pro tip. If you're not doing this, you should do this. First of
all, Microsoft recommends having no more than five global admins. Right, no
matter how big your enterprise is, no more than five. [00:20:00] One of them
should be an account that's used only in an emergency. It's one of these things
that say, in case of fire break lasts, and then it's behind that.

So you actually have to do something. And in that particular account, you
exempt it from MFA, and you put one big, long, honking password on it. You
can go up to 127 characters, and you might consider using an awful lot of them.
And, then take it, seal it in an envelope, sign it, lock it someplace, put it in the
network room, or whatever.

So that in the event of an emergency, you've got a backdoor into your own
enterprise. And that account should never be used, except for an emergency,
because when it does get used, it ought to set off alarms all over the place. And
so if you have thought about that, good for you. And then what I do is I go look
at the sign in logs once a week.

I have a manual check. I mentioned this before Mondays over first cup of coffee
or whatever. I just say, let me look at my global administrator and my senior
privilege users logins just to see if everything looks good. Yeah. There's tools
you can do that. Yeah. But there's nothing wrong with human eyes [00:21:00]
looking at it because it doesn't take that long.

And if you would expect to say, Hey, let me look at the login activities for last
month for this special account. It should always be no activity found. But if
there is, or there's an attempt to log in, something's up. And oh, by the way, pick
a login ID that's not going to be guessed by somebody. And so you've got a little
bit of security by obscurity on that.

So that's a little pro tip that might help you out in the Microsoft environment to
help protect you against that type of attack. Now, here's another MFA
authentication issue that can Also get most organizations today. Let's say you
have on prem servers that you use for testing your core website. And these on
prem web servers are internet facing because they need to mimic a production
website used by customers.

Your developers decide they want to use tools like Selenium Grid to write
automated test scripts since they release daily builds. And they want to see if
any new changes break things. And since test scripts can't really press a
YubiKey. That's why you had the longer one, physical ones, this thing to
actually activate, you have to physically contact it.

It's not a fingerprint [00:22:00] reader. It just says, Hey, I've completed a circuit.
So an unattended device sitting someplace can't be used to authenticate, even
though the key's in there. If you've got one of these, because a human has to. Do
that. In any case, what we find then is that the scripts can't press that YubiKey.

They can't look up a pin code from Microsoft Authenticator and type it over. So
what do you do? If you're a developer, just turn off MFA for the test accounts. I
mean, it's a test account. Come on. This means you just need a username and a
password to log in these systems since you have zero MFA for service accounts.

Now, the bad hackers can find these websites. Let's say using Shodan, because
you name them WebsiteQA or WebsiteTestServer, something like that as a
standard naming convention, that should definitely pick somebody's interest in
going through there. If you've never played with Shodan. io, you ought to do so.

You'd be surprised what you find that's internet facing, potentially from your
own organization. And I've had people who say, well, I don't want to enter my
server names in there because then I'm going to reveal it to somebody. Well, you
know what? It might already be revealed. It's already in their [00:23:00]
database.

And so you got to decide if you want to go ahead and hope that nobody has run
into it or your machine has not advertised it. Sometimes I see dual homed
systems where they've got an internal and an external IP address and you didn't
realize that that was left over. And now you provide different attacks.

So bad actors, if they find something like that, they might try doing what's
called a password spray to get their way into your test servers. Now password
spray is trying a whole bunch of passwords. You might either want to do them at
a fairly slow pace. Or the most common ones so that you don't trigger any
alarms or lock anything out.

But when that does occur and they get lucky or they start hitting your dev site or
your QA site with every password that's, let's say, eight characters or less. You
can do an exhaustive search on things that seem to be what people would type

in. do you look for that on the test systems? Do you block their IP addresses
after five invalid attempts?

Do you lock out the account itself so it has to do an admin reset? Probably not
because it's only a test system, right? Now, are you watching the logs? For your
non [00:24:00] production environment? Oh, yeah, we don't send those logs to
our SIEM because it's not production and the cost of sending logs and
monitoring them from non production systems, oh, it wasn't really in this year's
budget.

Well, there's always the hope that these non production accounts don't have
access rights to anything they shouldn't. but hope is not a good strategy in my
opinion. Because otherwise, if they did, you'd fall victim to the same attack. that
was used by the Russian Foreign Intelligence Service hacking group to get into
Microsoft.

Now Microsoft explains what the Russian nation state actors did.Quoate: "In
this observed midnight blizzard activity, the actor tailored their password spray
attacks to a limited number of accounts, using a low number of attempts to
evade detection and avoid account blocks based on the volume of failures. They
leveraged their initial access to identify and compromise a legacy test OAuth
application that had elevated access to the Microsoft corporate environment.

The actor created additional malicious OAuth applications. [00:25:00] They
created a new user account to grant consent in the Microsoft corporate
environment to the actor controlled malicious OAuth applications. The threat
actor then used the legacy test OAuth application to grant them the Office 365
Exchange Online full access as app role, which allows access to mailboxes.

End of quote. Now in 2020, the SANS Institute suffered a data breach that
exposed roughly 28, 000 PII records. And give SANS credit, they did a great
job of sharing the indicators of compromise. They disclosed what they learned
about the attack. They're not a publicly held company. They didn't have to, but
they led by example so that others could benefit from that experience.

Now was their system overprivileged? No. Did someone grab admin creds and
then dump an S3 bucket? No. So, so what happened? For those of us who
remember, one of the users fell victim to what's called a consent phishing scam.
Whereby the user was presented with what appears to be a SharePoint file share
for an [00:26:00] Excel spreadsheet.

Happened to be labeled, copy of July bonus, xls. Well, even if you weren't
expecting a bonus in July. Would be tempting to take a peek, right? Well, when
the employee clicked on the open link, they were redirected to an Amazon AWS
page that looked, well, you guessed it, exactly like the Microsoft login page
where the user dutifully entered valid credentials.

Now, what's interesting is that allowed installation of a malicious Office 365
app that created a mail forwarding rule. And they called it Anti Spam Rule.
Looks pretty innocuous to me, but at least on the label. But it actually looked for
keywords such as agreement, bank, cash, dividend, payment, purchase, transfer,
wire.

Kind of get the clue. And in the normal course of business, that user received
emails that triggered the forwarding rule. And off went that PII. And with the
Microsoft breach, what was different? They had an overprivileged test box.
Once the attacker landed on that test box and enumerated all [00:27:00]
permissions, there's probably a eureka moment.

Remember the Capital One breach where the attacker landed on one machine,
checked for S3 keys for which it had access, and then was ultimately able to
steal data directly. So, here's a thought problem for you. How do you move
laterally? from an email box. I mean, in the case of Microsoft, we concluded
that the test server had permissions on production 0365 as full access, and that
was a serious oversight.

Why would a test system have full permissions on a production asset? Well,
maybe to test sending broadcast emails to a certain group of users, but that
should have been shut down very quickly, or should it turn on the day and turn
off at night? Turn on the day, turn off at night. In the case of SANS, No lateral
movement was required.

The attacker just sat back and enjoyed reading emails as they were forwarded by
the rule that they inserted. Now, let's think about this. Microsoft did not have an
MFA and legacy test system that could grant [00:28:00] access to the corporate
email system. A well meaning SANS employee coughed up credentials to a
legitimate looking attacker. So it seems that MFA mishaps can even get some of
the smartest companies. Now, since we're playing Monday Morning
Quarterback, what should Microsoft have done?

I suggest that Microsoft should have used their own solution called Managed
Identities for Azure. And according to Microsoft, quote, Managed Identities
provide an automatically managed identity in Microsoft Enter ID for

applications to use when connecting to resources that support Microsoft Entra
Authentication.

Applications can use managed identities to obtain Microsoft Entra tokens
without having to manage any credentials. End of quote. Well, what does that
mean? In other words, managed identities allow you to control access at the
cloud level rather than at Network Layer 3, which is a whole lot better. You can
check the show notes for the link with the details, but essentially the process is
this.

First, you create a managed identity in [00:29:00] Azure by choosing a system
assigned managed identity. or a user assigned managed identity. A system
assigned managed identity creates a service principle that allows only that
Azure resource to use this identity to request tokens. Nobody else can use it. A
user assigned resource is a service principle that is managed separately from the
resources that use it, that is to say the users, and can be used by multiple
resources.

Next, you authorize that managed identity to access your target service. And
some of the things you can do with these managed identities are to create, read,
update, or delete, what they call CRUD, you know, typical database stuff. Use
role based access control or RBAC to grant permissions and view sign in
activities in Microsoft Entra sign in and logs.

So what's happening now is these users or the original accounts that's trying to
log in, don't log in directly. They have to first get a managed identity, which is
configured A, just for them, and then B, just for the resource that they're
supposed to go to. [00:30:00] And that intermediates these access and reduces
the likelihood that somebody could go ahead and hijack that token because,
well, they can't really use it.

It won't work for them. Now, notice that AWS also has something similar you
can do with IAM roles. If you're thinking, well, what if I can't use Azure or
AWS services since I'm running on prem? Well, in this case, you should limit
the IP addresses of whom can log into these machines to perhaps only Microsoft
owned IP ranges.

And that way everybody else on the Internet is blocked from trying to password
spray attacks. Okay, we've talked about a few MFA mishaps so far, but there's a,
here's another one you might not have considered because it's not a technical
attack. Your organization uses Microsoft Windows, like most companies, right?

Here's a hot new thing called Microsoft Entra Authentication, that allows you to
log in with a password and a biometric login. Woohoo! You figure bad actors
won't have the biometrics of your employees, so it'd be a good way to stop the
bad actors. So you decide to make it mandatory across the company.

You throw the big switch because you want one consistent [00:31:00] way to
log into all the devices. Now what can go wrong? Remember I said it's a non
technical issue. If your company has anybody that's an Illinois state resident,
they're protected by the Illinois Biometric Information Protection Act. Illinois
740 ILCS 14.

Again, in the notes. Essentially, the employee can say I do not give my consent
for the company to collect my biometric data on my work phone or laptop.
Now, if the company compels the employee to provide biometric data, that
would be a violation of that biometric privacy law. And who knows what other
jurisdictions will create similar or even more restrictive legislation in the future.

So at a minimum, you will need at least two different authentication systems for
residents of Illinois. One for those who opt in to having their biometric data
collected and one for those who do not grant consent. And note that that
particular law also requires the organization to have a written policy that
establishes the retention schedule and the guidelines for destroying biometric
identifiers according to certain destruction guidelines.

And [00:32:00] you must also receive a written release executed by the subject
of the biometric identifier or biometric information or the subject's legally
authorized representative. If you fail in any of these items, you can expect a
right of action, which your company could be sued in court for damages. Okay,
well, that's a whole bunch of stuff and maybe enough for one episode, so let me
just end it there.

I hope you liked learning about MFA mishaps on today's show. But remember,
if used correctly, multi factor authentication is a really good safeguard to protect
organizations against bad actors. However, it's also equally important, if not
more important, to implement MFA correctly and then safeguard it from being
turned against your organization.

Well, if you think this was an informative episode, do us a favor, share it with
your friends on social media. more admins implementing MFA securely helps
keep all of us safer. Also, if you'd like this type of content, don't forget to read
our new newsletter. by going to cisotradecraft.substack.com [00:33:00] and you
can find it there. Again, please follow us on LinkedIn because we put out a

whole lot more than just podcasts and we think our information is of great value
to you. We keep a high signal to low noise ratio and that is for your benefit. So
thank you again for listening and thank you for increasing your cybersecurity
tradecraft.

My name is G Mark Hardy and until next time, stay safe out there.

	#169 - MFA Mishaps

