
Certificate Transparency in Chrome:

Monitoring CT logs consistency

PUBLIC

Created: 2015-05-01
Last updated: 2017-03-02

Status: IMPLEMENTED
Authors: rsleevi, eranm

Overview
Certificate Transparency (CT) is an open effort to publicly log certificates issued by CAs,
allowing third parties to audit and notice misissuance/compromise. Basic support for CT already
exists in Chrome (in the form of verifying Signed Certificate Timestamps).

The next phase is auditing CT logs by checking for certificate inclusion. Chrome clients will be
provided with fresh, verified Signed Tree Heads to check inclusion against and will fetch
inclusion proofs over a DNS-based protocol. As the implication of failure to check inclusion is
not yet clear, this document focuses on the components necessary to experiment with inclusion
checking.

Terminology
Log: Public repository of certificates, conforming to RFC 6962 (CT).
Signed Certificate Timestamp (SCT): A log’s cryptographically-signed promise to include
(and make publicly available) a given certificate, after a given time.
Signed Tree Head (STH): A cryptographically-signed checksum of the entire Merkle tree a
log represents, which also includes the tree size.
Consistency Proof: A cryptographic way to verify that a Merkle tree is a newer version of
another (older) Merkle tree (details).
Inclusion Proof: A cryptographic way to verify that a given certificate + SCT combination is
included in a Merkle tree published by a log.
Maximum Merge Delay (MMD): The longest time period allowed for a CT log between the
issuance of an SCT and the creation of a log entry for that certificate + SCT combination.

Objective
There are two goals for this phase:

●​ Facilitating checking of certificate inclusion proofs (based on observed SCTs).
●​ Estimate the effectiveness of log auditing (by measuring freshness of STHs and success

rate of inclusion checking observed SCTs).

The results will mostly be invisible to the end-user; Chrome will report back the metrics on
freshness of data to Google and metrics on cases where inclusion checks would fail. Gathered
data will assist in choosing the path for dealing with SCTs for which inclusion cannot be proven.

http://www.certificate-transparency.org/
http://tools.ietf.org/html/rfc6962
http://www.certificate-transparency.org/log-proofs-work

To start with, the aim is to get answers to the following questions:

●​ How likely is it for a client to observe SCTs that are newer than the STH it knows about,
so they have to be queued for inclusion checking?

●​ How often do inclusion checks succeed?

Later on, measuring the duration SCTs would be pending inclusion checking would help us
estimate potential load on CT logs when SCTs for new certificates trigger inclusion checking.

Design Highlights
The intended behaviour is for Chrome clients to receive a collection of fresh STHs via Chrome’s
component updater, which will then be used for inclusion checking of SCTs. See the Security
Considerations section as to why consistency proofs are not necessary.
We do not intend clients to actively fetch STHs by themselves from logs or Google-operated
mirrors at this phase.
A client that observes a new SCT will check for inclusion of the associated log entry in the CT
log, if it has an STH that covers this SCT (that is, an STH that was issued after the MMD has
passed from when the SCT was issued). If not, the SCT will be queued for inclusion checking
until the next STH is provided.
Since any communication over HTTPS could result in more SCTs to validate (for example,
https://ct.googleapis.com/ provides SCTs in the TLS handshake), care should be taken to
make SCT inclusion proof checking asynchronous and independent.

Profile independence:

To avoid leaking state (SCTs and the certificates they relate to) between profiles, SCTs will be
audited independently in each profile (coupled to CTVerifier instances). That implies that the
same SCT, if observed on connections in different profiles, will be audited multiple times.

Memory consumption and persistence considerations:

●​ The queue of SCTs pending inclusion checked will be limited to 1,000 entries (per CT
log), taking up to ~32K of memory: The hash of the LogEntry to be audited will be
calculated as the SCT is observed, saving the need to keep the SCT and certificate in
the queue (that will change when the auditing result will matter not just for collecting
data). Additional new SCTs will be ignored.

●​ For SCTs which have been successfully checked for inclusion, an array of leaf hashes
will be kept in-memory to avoid re-checking inclusion status. The size of this array will
be limited to 1,000 entries, taking up to 32K (as each leaf hash is 32 bytes).

●​ Upon notification of memory pressure, all queues/caches will be emptied.
QUESTION: Should we cache failures? Not doing so means failures will be re-tried, doing so
means failures will be persisted until browser restart.

Bandwidth and resource consumption:

As many SCTs may be observed in a short time period and as Chrome can establish multiple
sockets, we’d like to avoid a large number of DNS queries being sent at once. To reduce this
load, we'll maintain a queue of inclusion proofs to fetch, so that we're never fetching more
than N concurrently. We'll start with N=1 initially, to minimize the chance that concurrent
fetching contributes to proof fetching failure rates.
Furthermore, the same SCT may be observed multiple times before its inclusion check is
completed, which may lead to multiple proof requests being sent. To reduce this traffic, the
queue of SCTs pending inclusion will be de-duplicated to avoid having the same SCT in the
queue multiple times. This means metrics will be measured for the SCT, which gives an
estimate about the reliability of fetching in general, because we don’t do a unique verification
for every connection, it means that more data would be needed to estimate the impact of

https://ct.googleapis.com/

making inclusion proof fetching critical. That is, if two connections share the same SCT and are
coalesced into one inclusion proof fetch, and that fetch fails, two connections could be
impacted, but we’ll only record that a single inclusion proof check failed. For judging the
inclusion proof checking mechanism, and since inclusion checking is asynchronous and cannot
be attributed to a particular connection, this is acceptable.

Design Details
The functionality required to implement this behaviour can be split into several modules:

●​ STH Component Updater (already implemented)
○​ Implements the ComponentInstallerTraits interface, receives new STHs (that are

provided once a day) and parses them.
●​ New SCT listener (already implemented)

○​ The recommended pattern is an interface under net/cert/ and an implementation
under components. This is to break any circular dependencies between the //net
stack, as SCTs are handled by certificate verification, but getting SCT status may
require making additional requests (as URLRequests sit above certificate
verification)

●​ Tree State Tracker (under review)
○​ Active component that drives fetching and verifying inclusion proofs.
○​ Receives notifications of new STHs received via the component updater.
○​ Will implement the SCT Listener interface to be notified of new SCTs.
○​ Checks for inclusion if possible, queues SCTs for inclusion checking if the STH

containing them is not available yet. In this phase will store a limited number
of SCTs and their inclusion status only in memory.

●​ Log DNS Client (already implemented)
○​ Uses a DnsClient to asynchronously fetch inclusion proofs from CT logs over

DNS.
○​ Sends queries to a specially-designed DNS resolver, conforming to the CT over

DNS draft RFC. All of the logs trusted by Chrome have such a resolver, provided
by Google. The disqualified logs currently do not have.

○​ Each trusted log will have a domain name that can be used to perform CT DNS
queries. This domain name will be added to the CTLogInfo stored in Chrome for
each log.

○​ Rate-limits the number of concurrent DNS requests made.
●​ Inclusion checking

○​ The CTLogVerifier will be extended to be able to verify a MerkleAuditProof.
●​ Tree state persistence: Stores SCT verification status to disk, to minimize number of

repeated requests clients make (optional at this phase).

Wiring to existing code
Two new interfaces will be added (under net/cert): STHObserver, STHReporter. STHObserver
for receiving call back of a new STH being observed, STHReporter for
registering/unregistering STHObservers. A new class for delegating notifications,
STHDistributor, will implement both.
The STHSetComponentInstaller will be registered together with all other components in
chrome_browser_main.cc. It will have a pointer to an STHDistributor which will be shared
with the IOThread so that TreeStateTracker instances could register for notification of new
STHs (rationale).
There will be a TreeStateTracker instance per-profile, created in IOThread::Init and
ProfileIOData::Init, where it will be registered to receive notifications of new SCTs (as it will
implement the CTVerifier::Observer interface) from the CTVerifier that exists in each
profile/IO Thread.
As the CTVerifier will outlive the TreeStateTracker (as it’s used by the URLRequestContext),
the link between them will be severed by resetting the observer on the CTVerifier to null in
IOThread::CleanUp / ProfileIOData::DestroyResourceContext, such that the

https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/chrome_browser_main.cc&sq=package:chromium&type=cs&l=438&rcl=1456389428
https://groups.google.com/forum/#!searchin/certificate-transparency-chrome/STHSetComponentInstaller/certificate-transparency-chrome/BSUqFi4UtX0/Zy7QYFiPLAAJ
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/io_thread.cc&l=719&cl=GROK
https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/profiles/profile_io_data.cc&l=1134&cl=GROK
https://code.google.com/p/chromium/codesearch#chromium/src/net/cert/multi_log_ct_verifier.h&sq=package:chromium&type=cs&l=43&q=ct_verifier
https://code.google.com/p/chromium/codesearch#chromium/src/net/cert/ct_verifier.h&sq=package:chromium&type=cs&l=27&rcl=1456389428

SCTInclusionChecker will not receive notifications of new SCTs during profile tear-down.

New component - components/certificate_transparency/
A new component is needed for several reasons:

●​ There is no reason to put this code under net/, as the results of providing fresh STHs
and ultimately inclusion checking will not be used by consumers of net/ code (unlike
SCT validation, whose results are exposed via SSLInfo).

●​ There is a dependency on net/ code to provide observed SCTs and usage of the net/
DNS code to fetch inclusion proofs.

●​ Inclusion checking will not be done initially on Android, to conserve network traffic and
battery life, until we have data on resource consumption of the feature.

The following modules will be added in the new component:
●​ TreeStateTracker: A delegate class that will implement STHObserver and

CTVerifier::Observer for receiving new STHs (via the component updater) and observed
SCTs and will delegate them to the per-log SingleTreeTracker instance.

●​ SingleTreeTracker: Receives notification of fresh STHs from the TreeStateTracker checks
their signature. Also receives notifications of observed SCTs for the log it’s tracking and
check their inclusion state or queue them for inclusion check when a fresh STH
becomes available. Once a fresh STH is available, checks inclusion of pending SCTs.
Holds references to CTLogVerifier instances for STH validation. May also hold a NetLog
instance to report individual events (STH verification, etc).

●​ LogDnsClient: Will provide an asynchronous interface for obtaining an entry’s leaf index
and an entry’s inclusion proof, using net::DnsClient.

There will be one instance of the TreeStateTracker on the IOThread which will be used by all
profiles. It will notify SingleTreeTracker instances of new STHs. The reasons for this approach
can be found in a net-dev thread.

Log DNS client
Each CT log recognized by Chrome will have a DNS end-point associated with it (even logs that
ceased operation), to detect backdating of SCTs.
The Log DNS client will rate-limit by limiting the number of concurrent DNS requests and
rejecting (synchronously) requests when its queue is full.
There will be a single LogDNSClient per profile, which will be owned by the TreeStateTracker.
The callbacks provided to the LogDNSClient will have weak pointers to SingleTreeTracker
instances, which will all share the LogDNSClient instance and will be cleaned up by the
TreeStateTracker before the LogDNSClient is.

UI modifications
None. Reports of successful/failed STH validation and inclusion checks will be logged through
the NetLog.

Metrics reporting
Clients will report, via UMA:

●​ The age of the STHs currently held (as buckets - less than 24h, 24h-48h, 48h-96h,
older than 96h).

●​ Failure to verify STH signature.
●​ How often can SCTs be checked for inclusion immediately (if needed, can be refined to

log the number of SCTs pending verification, i.e. for which a newer STH than the
currently-held one is available).

●​ How often inclusion proof checks are successful.

https://groups.google.com/a/chromium.org/forum/#!topic/net-dev/bjk_S0hnCVE

Scope
Apart from asynchronous notification of observed SCTs (to SCTInclusionChecker instances
acting as listeners) there are no changes to any flow of networking components.

Risk
The risk of negatively impacting user experience is minimal as STH validation and inclusion
proof fetching happens independently of any other flow, particularly certificate validation.
A different risk is the amount of traffic generated by Chrome clients who fetch inclusion proofs
- this will be handled by gradual deployment of the feature using Finch (see Release Plan
below) and measurement of the number of times clients fetch inclusion proofs. Clients will
also keep a local cache of log entries and their inclusion status to limit the number of requests
made.

Privacy implications
All clients will receive the same STHs from Google and will report back metrics that are not
related to specific certificates / domains.
Clients will ask for inclusion proofs over DNS, which is meant to be proxied via the clients’
DNS servers.
Analysis of privacy implications for using a DNS-based protocol are documented here.

Security considerations
Two scenarios have to be addressed to protect clients against log misbehaviour:

1.​ Ensuring all clients have the same view of the tree published by a log.
2.​ Verifying that for each SCT issued, the appropriate entry is in the log (i.e. the certificate

+ timestamp).
Generally, to ensure consistent view, clients have to check consistency between STHs and
should share the STHs observed with other clients. However, Chrome clients do not need to do
either as all clients will receive the same STHs from Google via the component updater (the
updates are signed).
The threat of Google’s STH distribution mechanism being compromised (by an attacker who
was also able to compromise a log) is not mitigated by clients checking consistency proofs as
the attacker could equally change Chrome’s behaviour (in the same way an attacker could
prevent gossiping of such STHs).
Verification of inclusion of issued SCTs (and the certificates they were issued for) will be done
by each Chrome client. Issuance of an SCT without inclusion of the right entry (in time) should
be rare enough to be considered a security incident and reported in the same manner that
invalid certificates are reported. Before that can happen we will measure how often clients fail
to obtain proofs of inclusion (and for how long) so as to not falsely report such SCTs and only
make a decision on reporting SCTs once we have strong confidence that these are security
incidents.

Possible Performance Impact
Note that the process of validating STHs and fetching inclusion proofs is asynchronous and is
independent from any certificate validation or any other networking operation. All operations
would be done in the background at a low priority.
CPU Consumption: The additional operations are verifying ECDSA signatures for each new
STH. This is negligible given it is performed roughly once every 24 hours.
Network overhead: Each client would receive a component update containing ~10 STHs.

https://docs.google.com/document/d/1DY2OsrSJDzlRHY68EX1OwQ3sBIbvMrapQxvANrOE8zM/edit

Assuming ~240 bytes per STH, that would amount to ~2.4k received once (on average) a
day.
Each client will also send a leaf index and inclusion proof request over DNS for each SCT
observed. These requests are ~100 and ~60 bytes in size, respectively. The leaf index
response is slightly larger than the request (by 2-10 bytes). The inclusion proof response size
can range from only 33 bytes larger than the request to as much as ~1k larger, depending on
the size of the log that the request is sent to.

Release Plan
Since, at this phase, all client operations are passive validation or reporting metrics, the
component updater will be deployed to all clients. Later on, when inclusion proofs are fetched
over DNS, a Finch experiment will be used to control gradual roll-out.

Future steps
Potentially fetching STHs independently if we witness some clients always miss component
updater updates / have to wait a long time for them.
Figuring out actions clients should take if they cannot obtain inclusion proofs for a period of
time from a particular log or all logs.

	Certificate Transparency in Chrome:
	Monitoring CT logs consistency
	PUBLIC
	Overview
	Terminology
	Objective
	Design Highlights
	Profile independence:
	Memory consumption and persistence considerations:
	Bandwidth and resource consumption:

	Design Details
	Wiring to existing code
	New component - components/certificate_transparency/
	Log DNS client
	UI modifications
	Metrics reporting

	Scope
	Risk
	Privacy implications
	Security considerations
	Possible Performance Impact
	Release Plan

