etcd vs Zookeeper

In general, assume that "reliable" clients to any consensus system need to follow a well thought out recipe to handle
all errors gracefully. It is also safe to assume that the number of "reliable" clients is probably going to be quite small.
Regardless of how the system is implemented, treating it as a reliable, highly available network file system for small
objects is likely to result in fewer problems.

zkocc is a Zookeeper Open Connection Cache - it's a smart-ish caching proxy for Zookeeper that is part of vitess
(github.com/youtubel/vitess).

Zookeeper Pros

Mature -- issues are a known quantity and most big bugs can be worked around in client code

Well considered API and straightforward for the most part

Software is generally reliable and uptime is largely determined by box or users abuse

Many handy bits of functionality (sequences, ephemeral nodes)

Known to handle large number of connections (20-30k per process) relatively well, even in a transcontinental
setup

Zookeeper Cons

Connections are heavyweight and expensive to construct. They require a quorum disk write on every
connect/disconnect.

o Solved by zkocc.
Protocol is very complex, even when you just want to read/write a value.

o Solved by zkocc.
AUTH/ACLSs are very poorly documented and rely on plain-text AUTH. However, they are enough to prevent
accidental stomping of multiple apps or multiple dopey users.
Complex to secure - you need to use IPsec, or stunnel.
Quorum required for even for reads

o Solve by zkocc which allows dirty reads for keys you have already requested.
Large data recovery can be difficult. Timeouts for internal leader election don't automatically scale to take into
account the size of the recovery image, leading to outages that are hard to recover from without lots of manual
intervention. (initLimit).
Terrible logging - poor classification of warning vs information (info is too verbose, warning gives you no
insight)
Too many timeouts and poor documentation about how they interact and (fail) to automatically scale.
C client aggressively reconnects in an opaque way - static 1s backoff (this happens in certain cases, not all
connection losses)

etcd Pros

HTTP protocol (with HTTPS support) - requires following HTTP redirects for writes

Allows "dirty" reads when the cluster is leader-less.

HTTPS allows you to keep the backend chatter secure very easily (performance is likely limited, as Go TLS
support is not known to be efficient)

RAFT algorithm is relatively well specified and somewhat understandable

Mirrors Chubby and POSIX - either you are a directory, or you are a file and you cannot convert between types
without deleting a node first.

Simple code is relatively easy to understand

Modular - build on top of go-raft, so storage and frontend rpc protocol are separate and presumably
swappable. Extensions like SASL would be relatively easy to add to the system.



etcd cons

HTTP protocol (lots of overhead per request, but does support pipelining)

Leader-less writes fail rather than block indefinitely (Feels like a bug, at the very least a timeout should be used
since there are likely to be transient states where there is no leader. | observed this behavior, but did not audit
the relevant code.)

JSON encoding of all responses is tiresome for binary data - it undermines the value of being able to curl data
since it can't be directly used with files

Listing "directories" returns all data in all child nodes (bug, or feature depending on how you look at it)

leader election for application coordination is tougher to implement in a scalable way - simple approach results
in thundering herd when the leader dies.

No explicit "mkdir" command - just assumes you want to create all paths in between

Large data likely to tickle Go garbage collection performance issues

Large data recovery semantics unknown

No ACL model at all right now.

Missing tunable variables for timeouts.



	etcd vs Zookeeper 

