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Illustration of the silicon “quantum photonic processor,” which includes entangled photon pair 
sources (left), unitary state evolution (center), and a bank of superconducting detectors (right).  

Large-scale photonic circuits have opened new research directions in machine learning and quantum 
information processing[1–5]. We have a position for researchers with strong backgrounds in optics, 
physics, and CS, with an interest in new forms of computing.  

Do you have experience or wanna learn CMOS & photonics modeling & design for tapeouts with 
leading foundries to change the face of AI hardware and/or quantum control (it turns out the 
mixed-signal requirements for the two are very similar)?  

Project descriptions:  

1.​ Quantum machine learning is a new class of algorithms for solving hard problems in 
supervised/unsupervised classification and clustering of classical or quantum data [6]. The 
candidate will work with researchers at MIT and collaborators to develop such algorithms. 

2.​ Deep Learning / Optical Neural Networks [5,7–11] 
3.​ Programmable optics for quantum control of Rydberg atom arrays with collaborators [12,13] 
4.​ Photonic device design: efficient spin-photon interfaces [14–16],  
5.​ Photonic Neural Network Accelerators for Scalable Brain-Machine Interfaces   
6.​ There’s a possibility also for entrepreneurship & other forms of tech transition  

Contact: For more information, send an application email with CV to Prof. Dirk Englund (englund  at 
mit.edu) of the MIT EECS Department and Dr. Ryan Hamerly (rhamerly@mit.edu) of the Research 
Laboratory of Electronics. Please include “[position_inquiry]” into the subject line.  
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QPL-NTT Summer Research Internships 
 
Time and Energy are the most important bottlenecks in modern Deep Learning [1].  As neural 
networks get bigger and Moore’s Law grows more difficult to maintain, these bottlenecks will 
become more and more severe.  We are developing Optical Neural Networks (ONNs) [2, 3] 
based on photonic integrated circuits that use the unique properties of light to circumvent the 
limits to Moore’s Law and build a new generation of fast, low-energy photonic AI processors. 

   

 
Left: a deep neural network decomposed into layers (activations plus matrix-vector multiply).  Center: 
schematic of ONN based on coherent detection [3].  Right: false-color image of part of an ONN circuit. 
 

Possible research directions: 
●​ New architectures for optical machine learning acceleration [2-4] 
●​ Develop large-scale photonic devices, e.g. modulator / detector / interferometer 

arrays. 
●​ Optical hardware for non-DNN tasks, e.g. Ising machines [5-6] 
●​ Benchmarking / system-level analysis and design. 
●​ Quantum limits and potential use of quantum resources in ONNs [7] 

 
Details / Contact: 

●​ Location: MIT (Cambridge, MA) or NTT Research (Sunnyvale, CA) or remote as 
situation allows / requires. 
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●​ Work with leaders in the field: Dr. Ryan Hamerly (MIT / NTT) [rhamerly@mit.edu] and 
Prof. Dirk Englund (MIT) [englund@mit.edu]. 

●​ Graduate-level researchers (including recent graduates) welcome to apply. 
●​ Supported by NTT Research Inc. appointment with a competitive stipend. 
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