Real-time documentation for ROS 2

Real-Time Working Group 09.03.2023

Table of Contents

Links

Real-time documentation

Current status

Proposal

Brainstorming, Ideas

Meeting minutes

2023-02-08 Meeting notes

2023-03-09 Break-out session: draft tutorials

Links

Related issues:

- ros2_documentation/issue:3320 Update ROS 2 real-time documentation
- ros-realtime/issue:41 Consolidate documentation

Fork of ros2_documentation (for the proposal)

Real-time documentation

Current status

Documentation at docs.ros.org

Ressource	What-to-do?	Assignee	Status
Tutorial/Building-Realtime-rt_preempt-kerne l-for-ROS-2.html	outdated link - same as below	Andrei	
Tutorials/Miscellaneous/Building-Realtime-rt_preempt-kernel-for-ROS-2.html	=> update, keep as tutorial	Andrei	
Tutorials/Demos/Real-Time-Programming.ht ml	=> integrate in new RT Tutorial	Carlos	
How-To-Guides/Building-ROS-2-with-Tracing-Instrumentation.html	keep as-is	-	ОК
How-To-Guides/Installing-on-Raspberry-Pi. html	keep as-is	-	ОК
How-To-Guides/Using-callback-groups.html	keep as-is	-	ОК
Concepts/About-Executors.html	keep as-is	-	ОК

Documentation at ros-realtime.github.io

Ressource	What-to-do?	Assignee	Status
ros-realtime.github.io/Guides	Move ROS2 Tracing to docs.ros.org	Oren	
ros-realtime.github.io/Benchmarks			
ros-realtime.github.io/Subprojects			

ros-realtime.github.io/Related-Projects		
ros-realtime.github.io/Resources		

Other documentation:

Ressource	What-to-do?	Assignee	Status
Executor Workshop	add link to some page		
Introduction to Real-time Systems	review and add relevant information to new page in Concepts	Jan	
https://shuhaowu.com/blog/2022/0 3-linux-rt-appdev-part3.html	integrate (copy/paste) into Concepts page	Shuhao	

Documentation Work-In-Progress

Ressource	What-to-do?	Assignee	Status
ros.docs.org/How-To-Guides/Dev eloping-a-real-time-application	convert into Tutorial/Real-time Application Configuration	Jan	

Proposal

13.02.2023

Summary:

- 1. move one tutorial about "ROS 2 Tracing" from ros-realtime to mainline
- 2. create a subgroup "Real-Time" under "Tutorial/Advanced" with two new Tutorials about Real-Time Development
- 3. add one page under Concepts with some Background information about Real-Time in ROS 2.

Proposed new structure (changes are shown in **bold** font):

Tutorials

- Advanced
 - ROS 2 Tracing
 https://ros-realtime.github.io/Guides/ros2_tracing_trace_and_analyze.h
 tml)
 - Change original article to redirect stub
 - Real-Time
 - Real-Time Application Configuration (Carlos, Jan)
 - describe callback groups and thread priorities (one solution only - not going into different options (possibly advanced tutorial on ros-realtime later on)
 - demonstrate with Pendulum Demo
 - Update the demo proposal:
 https://github.com/ros-realtime/community/issues/3
 7
 - https://github.com/ros-realtime/ros2-realtime-examples
 - Operating System Setup with RT Linux Kernel (moved from ros-realtimel (Andrei)

Concepts

- About-Real-Time-In-ROS2 (Jan, Shuhao)
 - background about real-time and ROS 2 Middleware/Executors
 - integrate relevant information from Design document <u>Introduction to</u> <u>Real-time Systems</u>
- Concepts/About-Executors.html (keep as-is)

How-To-Guides (keep all as-is)

- Building-Realtime-rt preempt-kernel-for-ROS-2
- <u>Building-ROS-2-with-Tracing-Instrumentation</u>
- Installing-on-Raspberry-Pi

- <u>Using-callback-groups</u>

Brainstorming, Ideas

Tutorials/Advanced:

- How to develop a real-time application in ROS2?
 - multiple single-threaded Executors, which have just one node, running in different threads (with real-time priorities)
 - callback groups (grouping callbacks from multiple nodes and assign it to one executor, that runs in a real-time thread
 - WIP:
 https://github.com/boschresearch/ros2_documentation/blob/feature/how-to-develop-real-time-application/source/How-To-Guides/Developing-a-real-time-application.rst

- Advanced tutorial with the reference_system? Comparison of different executors on RT Linux Rasp Pie?
 - single threaded
 - static_single_threaded
 - multi-threaded
 - thread priorities
 - callback groups and RT priorities
- Demos
 - Real-Time Demo
 - https://docs.ros.org/en/rolling/Tutorials/Demos/Real-Time-Progra
 mming.html
 - (needs to be updated to be a complete tutorial / or would this better be a How-To?
- Miscellaneous
 - XX

How-To-Guides

- Setup RT Linux for ROS 2
 <u>Tutorials/Miscellaneous/Building-Realtime-rt_preempt-kernel-for-ROS-2.html</u>
- How-To-Guides/Building-ROS-2-with-Tracing-Instrumentation.html
 - could be combined with:
 - https://ros-realtime.github.io/Guides/ros2_tracing_trace_and_an_alyze.html
 - ?
- How-To-Guides/Installing-on-Raspberry-Pi.html

- How-To-Guides/Using-callback-groups.html
- How To Configure RMW middleware (QoS)
 - https://ros-realtime.github.io/Guides/Configure-RMW-Implementation/configure-rmw.html
 - no information available
- How to setup a real-time operating system (or would this be a Tutorial?)
 - https://ros-realtime.github.io/Guides/Real-Time-Operating-System-Setup/rtos setup.html

Concepts

- Concepts/About-Executors.html
- About-Real-Time-In-ROS2
 - Middleware (Executors, Multi-threaded-Executors(but no priorities)
 - sequential processing in single threaded executor
 - static executor (improved performance, no shared pointers)
 - events executor (event queue instead of wait-set)
 - dynamic memory allocation for messages
 - Real-time operating system (thread priorities)
 - Combination of Executors/callback groups/multiple Linux threads

_

Meeting minutes

2023-02-08 Meeting notes

- do packages need to be re-compiled for real-time?
- have only a few tutorials (in advanced section)

2023-03-09 Break-out session: draft tutorials

Real-time processing using multiple threads

- use-case:
 - application with a hard real-time control loop (e.g. 1kHz control loop)
 and a number of best effort subscription callbacks
- what you will learn:
 - configure a real-time thread (aka a thread with a real-time priority)
 - map the processing of a callback to a real-time thread
- details:
 - two threads t1, t2
 - thread t1: executor e1
 - thread t2: executor e2
 - t1 with real-time priority
 - hard real-time control callback cb 1 => added to e1
 - multiple soft real-time callbacks cb i => added to e2
- Related:
 - https://ros-realtime.github.io/ros2-realtime-examples/minimal_scheduling/
 - https://github.com/ros-realtime/ros2-realtime-examples/blob/rolling/minimal_scheduling_callback_group.cpp
 - https://github.com/ros-realtime/ros2-realtime-examples/blob/rolling/minimal_scheduling_spin_thread.cpp

Minimize end-to-end latency of multiple-node system

- use-case:
 - larger application with multiple nodes. Each node has multiple callbacks. There is one critical path to minimize the end-to-end latency
- what you will learn:
 - executor with callback groups
 - distribution of callbacks to callback groups and different prioritized threads
- details

Memory locking

- avoid page-falls
- Related:
 - https://github.com/ros-realtime/ros2-realtime-examples/blob/rolling/minimal_m emory_lock/minimal_memory_lock.cpp
 - https://ros-realtime.github.io/ros2-realtime-examples/minimal memory lock/

Thread-configuration of ROS middleware provider

- What happens with other threads (RMW, DDS threads)?
- Example to configure DDS-threads
 - main tread configuration before DDS is configured (rclcpp::init)
 - tuning of DDS configuration

Related

https://github.com/ros-realtime/ros2-realtime-examples/blob/rolling/minimal_sc heduling/minimal_scheduling_m

- Related:
 - https://fast-dds.docs.eprosima.com/en/v2.0.0/realtime.html
 - https://github.com/ros-realtime/ros2-realtime-examples/tree/rolling-experimental/minimal_dds_tuning

Best practices

- using MultiThreadedExecutor; but callbacks are not processed in parallel
 - one node, multiple subscriptions added to the node => implicitly they are all added to the same default callback_group::MutuallyExclusive
 - node added to MultiThreadedExecutor => all callbacks are processed sequentially
 - Solution1: Each subscription derived from Node, add all Nodes to an Executor (simple)
 - Solution2: use callback_groups to configure which callbacks can run in parallel (more complex)
 - reference to "Using callback groups" page
- large jitter of subscription latency even though it is called in real-time thread
 - setup:
 - e.g. 2 subscription callbacks A, B
 - one callback C with real-time requirements
 - what happened: if subscription callbacks A and B received new data: their callbacks might be processed before callback C (Executor processes incoming events sequentially, similarly with MultiThreadedExecutor modulo number of threads)
 - Solution: callback_groups and real-time threads
 - two threads T1, T2; T2 with real-time priority.
 - two executors E1, E2
 - put A, B in cbg_1, add cbg_1 to E1
 - put C in cbg 2, add cbg 2 to E2
 - E1 processed in T1, E2 processed in T2

Improving performance with Static Executors

- better performance
- static configuration of entities at configuration time

Backlog:

Deterministic execution order with WaitSets

- use-case:
 - sensor fusion: synchronize multiple sensor input with different rates
- what you will learn:
 - specify deterministic execution order using rclcpp::WaitSet
 - be aware of potential busy-loop: performance degradation!
- details
 - example: synchronization:
 https://github.com/ros2/examples/blob/b327f8cd19a8278631116f01b96
 bdfc7b55205ec/rclcpp/wait_set/src/wait_set_random_order.cpp#L55
 - example: multiple rate publishers:
 https://github.com/ros2/examples/blob/rolling/rclcpp/wait_set/src/wait_s
 et topics with different rates.cpp

similar to message filters