Meta description - Event-Driven architecture plays an important role in the software industry.
See what it is, how it works, and what benefits it brings to software development.

Title tag - Event-Driven Architecture | Complete Guide

Event-Driven Architecture: What It Is
and How to Use It Effectively

Enterprises built on complex architectures, such as those in the financial sector, telecoms and
media, face a number of challenges as their systems continue to grow in complexity. Scalability
is more difficult to achieve, change is more complex and businesses miss out on opportunities
to generate value from their data.

Event-driven architecture (EDA) is an architecture approach used by enterprises to tackle those
challenges. EDA helps businesses unlock value from their data by enabling real-time data
generation and utilisation, which can result in better, faster decision-making.

In this blog, we’re going to give an introduction to EDA, its benefits and whether you should be
using it within your organisation.

Before we go into what exactly EDA is, let’s take a look at what exactly an event is.

What Are Events?

Events are any change of the state of a system and can either be the change itself (e.g. user
actions, business transactions or APIs being called) or the identifier (e.g. a notification of a
transaction).

Using an ecommerce platform as an example, events might include a range of end-user actions
such as visiting the site, logging in, browsing products, adding a product to the cart or checking

out. Additionally, backend or system actions, from inventory updates, shipping invoice creation,

sending marketing emails to more technical tasks such as system cache clearance and system

log creation, can also be considered events.

The value of an event can degrade if not acted upon in a timely manner. Each interested
recipient would need to take action at different speeds depending on the nature of the
transaction, event or regulations. Let’'s examine a card payment transaction done by a bank
customer. Once the transaction is completed by a customer at a retail shop, the core banking
system must be informed immediately to deduct the amount from the customer’s account, and
the notification service must inform the customer immediately via SMS or an in-app notification.

However, the statement generation service only needs to know about the event at the time of
statement generation for a given period. EDA caters for broadcasting events in real-time or near
real-time where events could be used by recipients at their own pace based on their needs.

What Is Meant By Event-Driven Architecture?

EDA is a software design pattern that focuses on broadcasting events to all interested
applications, systems or microservices. It's considered an asynchronous architecture as it
facilitates asynchronous communication between the sender and the recipient. Traditional
request-based architectures require services to wait for a reply before moving on to a new task
but the EDA model eliminates this need, removing the constraint of systems depending on a

single message flow or awaiting additional processing.
(: Data Lake
Stores event

v 4 h h J
[Ev&nt Consumer 1 } [Event Consumer 2 } [E\reﬂt Consumer 3] AAAAAAAAAAAA Event Consumer N

Diagram 1: Event-Driven Architecture High Level View

Event Producer Publishes E'.'-ent—b(

Jayoig
uang

In an EDA-based system, the event producer will simply publish the event within the broker. It
doesn’t need to know who is subscribed or what actions they will do with the event. The event
consumer doesn’t need to know who published the event or what the other consumers will do.
The consumer will start its actions once it's informed of the event.

Event Flow in Event-Driven Architecture

Now we have an understanding of EDA and events, we can look at the components in a typical
event flow. These components are:

e Event Producers or Publishers
e Event Brokers or Event Hub
e Event Consumers or Subscribers

https://www.techtarget.com/searchapparchitecture/tip/Synchronous-vs-asynchronous-communication-The-differences

— |
l Events Hub
Event Producer
l vt |

—I—‘ Subscribers
Publishers

Stores event

Event Consumer

‘ Data Lake

Diagram 2: Scaled EDA system

Event Producer

This is the first stage of the EDA event flow and is the source of an event i.e. where the event is
created. An event producer can be any entity that can create an event from web applications,
monitoring events, physical sensors, etc. This can be a system of record such as a core banking
application, a billing system or an insurance platform. It can also be a system of engagement
such as an ecommerce website, a customer care mobile application or a gaming application.

Event Broker

This is the second stage of the flow that acts as the middleware between the event producer
and the event consumer. It collects the events created by the producer and routes the event to
the appropriate consumer. Event brokers are essential for publish/subscribe messaging system
(pub/sub) patterns. However, they can be ignored in simpler EDA implementations where event
producers can directly talk to the consumers.

The broker can act asynchronously, accepting and processing multiple events and then sending
them to all the appropriate consumers. Brokers can also queue events so that they can be
consumed later.

Event Consumer

This is the end of a typical event flow, where the system logic resides and the required actions
are carried out depending on the event. It can range from sending an email for a login alert or
utilising an analytical engine to process the data sent by an event to even triggering a new event
for further processing. A single EDA application can have multiple consumers waiting for
different kinds of events targeted at specific actions. Consumers can be systems of records

such as a billing system, a microservice or a core banking system, and they can also be a
system of engagement such as a marketing platform or a notification engine.

Loosely Coupled and Decoupled Nature of
Event-Driven Architectures

EDA allows developers to easily create applications with loosely coupled services and
sometimes entirely decoupled components. The application itself, devices, or in EDA terms, the
event consumer does not need to know where the information is coming from. It leads to the
loosely coupled nature of different components of the application. Even though these
components require each other to perform the necessary actions within the system, they are not
strictly bound together. Thus a failure on one service will not cause issues in others.

1
EAohet 8 C.'hECkOUt Publishes Event: Order Placed
Service
Cloud Storage
Stores event

¥ ¥ ¥ h
Shides Lueielion ey Oder DEVEr SEIWICB, « « » ==« v 0= Marketing Service
Service Management Service

Diagram 3: EDA Example - An Ecommerce Order

EHTENT]
aloedy

In the ecommerce example shown in Diagram 3, the Basket and Checkout service publishes the
event—order placement—to all interested applications. All services in this example are unaware
of the existence of the other services; they could be part of the same system or components of
different systems. For example, the organisation can easily change its marketing messaging
according to order history without it having an impact on the event producer—Basket and
Checkout Service—or any of the other services, with the caveat that the new platform will use
the same produced event.

In the same way, if the organisation decides to add a new service to the checkout flow such as
sending a post-sale survey to the customer, this can be developed and subscribed to the event.
This will be seamless to the existing components of the system.

This decoupled nature can vastly improve the aqility and scalability of a system. EDA provides a
good architectural approach for a modular system as it prevents the need to depend on a reply
or an acknowledgement for the communication between components. This enables the
continuous change and agility needed in a competitive market.

Event-Driven Architecture Messaging Models

EDA relies on events communicated between different components of a system. The two main
event models are publish/subscribe and event streaming.

Publish/Subscribe Model

The pub/sub model, which is also called the event messaging model, is based on a subscription
pattern. An event consumer will subscribe to single or multiple topics that capture messages
published by event producers. When an event producer publishes an event, it will be delivered
to all event consumers who have subscribed to the relevant topic.

Event brokers receive the published message, apply transformations if necessary, queue and
store them, and then send them to the subscribers. These messages are then deleted from the
broker once they’re consumed by the event consumers.

Amazon’s Simple Notification Service SNS

SNS is a fully managed pub/sub service that sends notifications two ways, A2A and A2P. A2A
provides high-throughput, push-based, many-to-many messaging between distributed systems,
microservices, and event-driven serverless applications. These applications include Amazon
Simple Queue Service (SQS), Amazon Kinesis Data Firehose, AWS Lambda, and other HTTPS
endpoints. A2P functionality lets you send messages to your customers with SMS texts, push
notifications, and email.

SNS is appropriate for organisations that have workloads on AWS and want to utilise SaaS
based tools to free up their developers and operations to focus on business innovation.

Amazon’s Simple Queuing Service SQS

Is a fully managed message queueing for microservices, distributed systems and serverless
applications. It provides a reliable and highly scalable message distribution. Unlike SNS, it
supports a first in first out (FIFO) feature that guarantees the order of messages. It is more
suitable for systems that need to receive messages in the exact order and only once. It supports
different encryption options like SNS.

Azure Web Pub/Sub

Is a fully managed service that supports native and serverless WebSockets. It offers a real-time
pub/sub messaging for web application development through native and serverless WebSocket

https://www.rootstack.com/en/blog/key-benefits-decoupled-architecture/
https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2Fsubscribe%20messaging%2C%20or%20pub,the%20subscribers%20to%20the%20topic.
https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2Fsubscribe%20messaging%2C%20or%20pub,the%20subscribers%20to%20the%20topic.
https://aws.amazon.com/sqs/?nc2=h_ql_prod_ap_sqs

support. It is highly scalable and can scale to millions of connections. It is a good option for
organisations who have their workloads in Azure and want to utilise a SaaS product to keep
their focus on functionality and business logic and innovation.

GCP’s Pub/Sub

Is a fully managed highly available message distribution platform. Its synchronous, cross-zone
message replication and per-message receipt tracking ensures reliable delivery at any scale. It
natively integrates with BigQuery, DataFlow and other operational DBs, as well as providing
third-party integrations with Splunk and Datadog for logs along with Striim and Informatica for
data integration. This is a great option for organisations who have their workloads in GCP and
who want to focus their efforts on business innovation by choosing a SaaS platform.

Apache Kafka

Is an open-source distributed pub/sub platform that offers high-performance data pipelines,
streaming analytics, data integration, and mission-critical applications. Like the other Apache
products, Kafka is used by thousands of organisations across different industries. It's free and
has an active community of developers. This is suitable for organisations who are looking for
more control and are not afraid to venture with open source products.

Confluent

Is an off-the-shelf solution that is based on Apache Kafka. It is a cloud native SaaS platform that
offers all features of Apache Kafka and other enriched features. It also comes with enterprise
grade support.

Event Streaming Model

In this model, event producers stream event messages to the broker, and event consumers are
subscribed to these streams. Here, event consumers can consume only the event they require
from the event stream at any point. This is in contrast to the pub/sub model, where subscribers
receive all the published messages. The messages are persistent which means that published
messages are available even after subscribers have consumed them. The streaming model
offers two distinct advantages compared to the pub/sub model:

e Event Persistence: This model stores the streaming events to allow subscribers to
consume events at any time. The period these events are kept is configurable
depending on the requirements. This persistent nature allows consumers to process
historical data as well as real-time data.

e Advanced Event Processing: While simple event processing enables each published
event to get delivered to a consumer that carries out a specific functionality. Advanced
Event Processing exceeds those capabilities and powers advanced scenarios such as

https://cloud.google.com/pubsub
https://kafka.apache.org/

batch event processing, where event consumers can process a series of events and act
upon the results of the entire event series.

AWS EventBridge

Is an event hub SaaS based serverless tool that filters, transforms, routes, and delivers events.
It supports multiple event buses, with a rich set of rules to be applied to the events with reply
and archiving features.

AWS Kinesis

A data streaming as a service tool that collects, processes, and analyses real-time, streaming
data. It is scalable and flexible ingesting different data types such as video, audio, application
logs, website clickstreams, and loT telemetry data for machine learning, analytics, and other
applications. Amazon Kinesis enables the processing and analysis of data as it arrives and
responding instantly instead of having to wait until all your data is collected before the
processing can begin.

Azure Stream Analvtics

Azure’s data streaming SaaS tool that allows the streaming of large scale data in realtime. It is
highly scalable (millions of events), performant (sub-second) and reliable with financially backed
SLAs. It is a low code platform that provide an end-to-end analytics pipeline with SQL syntax
and extensible with JavaScript and C# custom code.

GCP Dataflow

Is a fully managed highly available message data streaming tool. It Automates the provisioning
and management of processing resources. It horizontally autoscales worker resources to
maximise resource utilisation. It offers a cheaper processing option for data streams that can
tolerate being batch processed within a 6 hour window, as well as powerful Al capabilities to
process large volumes of data with near-human intelligence.

Apache Beam

Is an open-source distributed data streaming platform that offers a single programming model
for both batch processing and real-time streaming.

How It Works: Example Architecture

Now we have an understanding of event-driven architecture, let's look at two examples.

https://aws.amazon.com/eventbridge/
https://azure.microsoft.com/en-us/products/stream-analytics/?&ef_id=Cj0KCQiA1NebBhDDARIsAANiDD3n3DfwYuxmkJYeY2r4PK94xjTxVsr0cPVAjL2nc_HGkO3Cz44a2u8aAuGQEALw_wcB:G:s&OCID=AIDcmmgolewyyf_SEM_Cj0KCQiA1NebBhDDARIsAANiDD3n3DfwYuxmkJYeY2r4PK94xjTxVsr0cPVAjL2nc_HGkO3Cz44a2u8aAuGQEALw_wcB:G:s&gclid=Cj0KCQiA1NebBhDDARIsAANiDD3n3DfwYuxmkJYeY2r4PK94xjTxVsr0cPVAjL2nc_HGkO3Cz44a2u8aAuGQEALw_wcB#overview
https://cloud.google.com/dataflow#section-2
https://beam.apache.org/

Simple Monitoring Example

Assume you are managing an array of loT devices in a manufacturing plant. Each device is
configured to provide different metrics to ensure the smooth operation of the production line.
This monitoring can range from detecting machine malfunctions and temperature changes to
product defects.

In an event-driven configuration with pub/sub method, the broker will receive events from all the
devices in real-time and pass those events to all the relevant subscribers. These subscribers
may be automated systems that will take action according to the alerts. For instance, increase
cooling for the component if a temperature increase is detected or simply alert a maintenance
person about that anomaly.

Multi-Tiered Event Streaming Example

Think of a stock analytics organisation that needs to analyse the market movements both in
real-time as well as on historical data. In this scenario, different sets of trading platforms can act
as the event producers constantly feeding stock changes from different sources to an event
broker.

This event broker will forward the necessary events to the subscribed event consumers while
storing all the event data. Moreover, it will allow different components to access different sets of
data. Components targeted at processing real-time events can subscribe directly to the broker
and get the events. Meanwhile, components that require access to historical data can query
them directly from the broker.

These components can process these events either individually or as a series of events to
analyse the market and predict future market conditions. Furthermore, both real-time and
historical data can be processed in parallel to gain even more insights. With these results, the
system components can create new events that trigger different functions, such as automated
trade executions or informing clients of their analysis.

Should You Use Event-Driven Architecture?

While EDA can be applicable for most modern application developments, there are scenarios
where they are extremely beneficial.

Resource State Monitoring And Alerting

EDA is tailor-made for resource state monitoring and alerting. Any change to the state can be
instantaneously captured and alerted. It is useful at both the application and infrastructure levels
as software can be developed to capture the states of virtually any resource. When this

near-unlimited scalability is coupled with the asynchronous message processing, any number of
events from any amount of resources can be captured.

These events can then be easily filtered and distributed to relevant subscribers to take
necessary actions. Users can identify faulty patterns in a streaming configuration and easily
troubleshoot or audit systems using historical data by storing these data.

Fanout And Parallel Processing

Another pillar of EDA is its ability to process messages asynchronously, allowing to fan out
workloads and enabling parallel processing. Any number of events can be received by a broker
from different event producers and delivered to different components for processing. In order to
reduce the workload of a specific application component, it can be scaled out by provisioning
multiples of the same component and distributing the events between them to fan out the work.
The same can be done to enable parallel processing where events can be processed in parallel
without waiting until a previous event is completed as with traditional response-driven
architecture.

A scalable microservices and modular architecture

EDA is a good choice in a complex microservices architecture. With the increase in the number
of microservices, synchronous communication between those services will become increasingly
complex to orchestrate, increase latency within the system and increase the network utilisation.
EDA will give the flexibility and agility to add, remove or modify microservices within the system
without impacting the other services or the event producer or main system.

Benefits Of Event-Driven Architecture

While EDA has many benefits, the main benefits will be functionality and flexibility, especially
when compared to response-driven architectural patterns. EDA provides the following benefits:

e Real-Time Data Processing
EDA is geared at processing events as soon as they occur without having to wait for a
response. Asynchronous messaging allows different components to communicate with
various events asynchronously. It allows systems to react to events in real-time.
Implementing an event stream will further expand this functionality by allowing users to
keep track of both historical and real-time data, which will be crucial for analytics.

e Responsiveness
Real-time event processing helps this architecture increase the responsiveness of a
system naturally without requiring additional configurations. It not only increases the
responsiveness of the application itself but also in monitoring and troubleshooting
scenarios. As events are instantly delivered, any components within the system can act

near instantaneously. Any faults or issues within the system can then be quickly detected
and resolved without cascading to more complex issues.

e Increased Scalability and Fault Tolerance
EDA allows users to create loosely coupled or decoupled components. Thus each
component of the application does not rely on the availability of each other. Even if a
single component fails, others can function without issues, increasing the fault tolerance
of the overall system. Furthermore, each component can be independently developed,
tested, and deployed without interrupting the entire system. Additionally, each
component can be scaled up or down depending on their workload. It will help to
manage resources effectively and address bottlenecks in the system efficiently.

e Extensibility
The decoupled approach combined with message-based communication enables
developers to easily extend the system’s functionality without worrying about conflicts
within the system. Simply develop an independent component, stream the events and
perform the necessary functions and, if required, create new events as outputs that will
trigger other components within the system or supported third-party applications or
platforms. Additionally, it allows developers to deploy components in the various
platforms from on-premise to cloud services without worrying about communications, as
event mesh will manage the distribution of events.

In Summary

With more and more applications becoming cloud-based and utilising multiple services and
platforms, EDA enables developers to create simple yet flexible component-based applications
without tightly coupling components. It also provides the flexibility to deploy components without
being locked into a specific platform.

EDA is relatively easy to understand and implement compared to other architectures. With a
simple event flow from event producer to event consumer via a broker, applications can easily
be broken down into specific components that fit into this flow. Even with this simplicity, EDA
provides unparalleled flexibility to build scalable and fault-tolerant applications that can process
large volumes of data efficiently. Besides, the event-driven nature is well suited to deal with
real-time data facilitating near-instantaneous reactions to any event. With the rapid growth of
adapting EDA in the real world, utilise an event-driven architectural pattern to power your next
application.

	Event-Driven Architecture: What It Is and How to Use It Effectively
	What Are Events?
	What Is Meant By Event-Driven Architecture?
	Event Flow in Event-Driven Architecture
	
	
	Event Producer
	Event Broker
	Event Consumer

	Loosely Coupled and Decoupled Nature of Event-Driven Architectures
	Event-Driven Architecture Messaging Models
	Publish/Subscribe Model
	Amazon’s Simple Notification Service SNS
	Amazon’s Simple Queuing Service SQS
	Azure Web Pub/Sub
	GCP’s Pub/Sub
	Apache Kafka
	Confluent

	Event Streaming Model
	AWS EventBridge
	AWS Kinesis
	Azure Stream Analytics
	GCP Dataflow
	Apache Beam

	How It Works: Example Architecture
	Simple Monitoring Example
	Multi-Tiered Event Streaming Example

	Should You Use Event-Driven Architecture?
	Resource State Monitoring And Alerting
	Fanout And Parallel Processing
	A scalable microservices and modular architecture

	Benefits Of Event-Driven Architecture
	In Summary

