VY Hello, here is a guide | made to help simplify the setup of your
App’s security (original video).

Table of Contents (Estimated Time: 30 Minutes)

1.

Enable Anonymous Authentication

Register & Activate App Check (reCAPTCHA v3)
Allow Unauthenticated Invocations in GCP

Write & Deploy Your Callable Function

Initialize Firebase + App Check + Auth in Your App
Call the Function from React

(Optional) Client-Side Rate-Limit UX

Why This Is Secure & CORS-Free

= Follow |G, X, YouTube leave a like if this was helpful & (1)



https://youtu.be/nf56yrnoPuo
https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown

1)

2)

3)

4)

Enable Anonymous Authentication

In the Firebase Console » Authentication » Sign-in method, enable
Anonymous.

This gives every browser session a Firebase ID token without asking the user to
sign in.

Register & Activate App Check (reCAPTCHA v3)
In the Firebase Console » App Check, register your Web app.
Choose reCAPTCHA v3, enter your site key, and finish setup.
Your front end will now obtain App Check tokens silently.
Allow Unauthenticated Invocations in GCP

In the Google Cloud Console » Cloud Functions » select your
generate_timestamps function » Security, choose Allow unauthenticated
invocations.

Security is enforced inside the function by Auth + App Check, avoiding CORS
preflight failures.

Write & Deploy Your Callable Function

In functions/requirements. txt, list the Firebase Functions Python SDK
and any other packages.

In functions/main.py, implement your callable function with Auth and App
Check checks, and the external API call.

From your project root, install dependencies and deploy with firebase deploy
--only functions:generate_timestamps.

See relevant code here (GitHub Repo).

= Follow |G, X, YouTube leave a like if this was helpful &' (2)



https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown

5)

6)

7)

8)

Initialize Firebase + App Check + Auth in Your App

In your front-end code (e.g. src/firebase. js), initialize the Firebase app,
then set up App Check with ReCAPTCHA v3, sign in anonymously, and get the
Functions instance.

See relevant code here (GitHub Repo).
Call the Function from React

In the component where you need the timestamps, import httpsCallable from
Firebase Functions, call your generate_timestamps function, and handle any
errors.

See relevant code here (GitHub Repo).
(Optional) Client-Side Rate-Limit UX

Store each call’s timestamp in localStorage and on each render count calls in
the past hour.

If the user has reached your chosen limit (e.g. 10 calls/hour), replace the
“Generate” button with a link to upgrade or retry.

See relevant code here (GitHub Repo)..

Why This Is Secure & CORS-Free

App Check ensures only your genuine front-end can call the function.
Anonymous Auth provides a UID that your function verifies.

Callable Functions automatically handle CORS and inject both Auth and App
Check tokens.

Together, these measures block bots, unauthorized clients, and raw HTTP
requests—only valid users from your app can succeed.

= Follow |G, X, YouTube leave a like if this was helpful &' (3)



https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown

Follow more cool stuff

https://x.com/corbin braun

ef\, Corbin Brown
* W Just Start - Builder’s Console Log (ep 2) is out now!

On today's episode of Builder's Console Log, I'll be sharing insights and
experiences from my 3.5 years running LUU Aromatherapy Inc.

See full episode here ->

here is a sneak peak &

= Follow |G, X, YouTube leave a like if this was helpful &' (4)


https://x.com/corbin_braun
https://x.com/corbin_braun/status/1934141886035624443
https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown

