
👋 Hello, here is a guide I made to help simplify the setup of your 
App’s security (original video). 

 

Table of Contents (Estimated Time: 30 Minutes) 

1.​ Enable Anonymous Authentication​
 

2.​ Register & Activate App Check (reCAPTCHA v3)​
 

3.​ Allow Unauthenticated Invocations in GCP​
 

4.​ Write & Deploy Your Callable Function​
 

5.​ Initialize Firebase + App Check + Auth in Your App​
 

6.​ Call the Function from React​
 

7.​ (Optional) Client-Side Rate-Limit UX​
 

8.​ Why This Is Secure & CORS-Free​
​
 

 

 

 

☕Follow IG, X, YouTube leave a like if this was helpful 🤠 (1) 

https://youtu.be/nf56yrnoPuo
https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown


1)​ Enable Anonymous Authentication​
 

●​ In the Firebase Console ► Authentication ► Sign-in method, enable 
Anonymous.​
 

●​ This gives every browser session a Firebase ID token without asking the user to 
sign in.​
 

2)​ Register & Activate App Check (reCAPTCHA v3)​
 

●​ In the Firebase Console ► App Check, register your Web app.​
 

●​ Choose reCAPTCHA v3, enter your site key, and finish setup.​
 

●​ Your front end will now obtain App Check tokens silently.​
 

3)​ Allow Unauthenticated Invocations in GCP​
 

●​ In the Google Cloud Console ► Cloud Functions ► select your 
generate_timestamps function ► Security, choose Allow unauthenticated 
invocations.​
 

●​ Security is enforced inside the function by Auth + App Check, avoiding CORS 
preflight failures.​
 

4)​ Write & Deploy Your Callable Function​
 

●​ In functions/requirements.txt, list the Firebase Functions Python SDK 
and any other packages.​
 

●​ In functions/main.py, implement your callable function with Auth and App 
Check checks, and the external API call.​
 

●​ From your project root, install dependencies and deploy with firebase deploy 
--only functions:generate_timestamps.​
 

●​ See relevant code here (GitHub Repo).​
 

☕Follow IG, X, YouTube leave a like if this was helpful 🤠 (2) 

https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown


5)​ Initialize Firebase + App Check + Auth in Your App​
 

●​ In your front-end code (e.g. src/firebase.js), initialize the Firebase app, 
then set up App Check with ReCAPTCHA v3, sign in anonymously, and get the 
Functions instance.​
 

●​ See relevant code here (GitHub Repo).​
 

6)​ Call the Function from React​
 

●​ In the component where you need the timestamps, import httpsCallable from 
Firebase Functions, call your generate_timestamps function, and handle any 
errors.​
 

●​ See relevant code here (GitHub Repo).​
 

7)​ (Optional) Client-Side Rate-Limit UX​
 

●​ Store each call’s timestamp in localStorage and on each render count calls in 
the past hour.​
 

●​ If the user has reached your chosen limit (e.g. 10 calls/hour), replace the 
“Generate” button with a link to upgrade or retry.​
 

●​ See relevant code here (GitHub Repo)..​
 

8)​ Why This Is Secure & CORS-Free​
 

●​ App Check ensures only your genuine front-end can call the function.​
 

●​ Anonymous Auth provides a UID that your function verifies.​
 

●​ Callable Functions automatically handle CORS and inject both Auth and App 
Check tokens.​
 

●​ Together, these measures block bots, unauthorized clients, and raw HTTP 
requests—only valid users from your app can succeed. 

 

☕Follow IG, X, YouTube leave a like if this was helpful 🤠 (3) 

https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown


 
 
Follow more cool stuff 
 
https://x.com/corbin_braun 
 

 

☕Follow IG, X, YouTube leave a like if this was helpful 🤠 (4) 

https://x.com/corbin_braun
https://x.com/corbin_braun/status/1934141886035624443
https://www.instagram.com/corbin_braunlich/
https://x.com/corbin_braun
https://www.youtube.com/@Corbin_Brown

