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Answers to questions about what's going on in the world are probabilistic at best. We have
imperfect measuring devices: our eyes, our brains, our ideologies, our medical tests, and so on.
And the truth is hard to uncover out there. Here’s some help on how to think about whether or
not you've got covid and what a test results, positive or negative means.

First, the complication here is that we’ve got two different probabilities that can be working
against each other: there is a probability that a person has the disease and there’s the
probability that is the accuracy of the test. When we combine those, wecan get some
counterintuitive results. Bayes’ Theorem is what we use to clarify.

Pr(HIO)=  _Pr(Q|H)Pr(H)
Pr(O[H)Pr(H) + Pr(OJ~H)Pr(~H)

Here, H stands for “hypothesis,” O stands for “observation,” and ~H stands for “the hypothesis is
false.” And the upright line | stands for “given that.” So suppose we want to know, what'’s the
probability that you’'ve got covid (the hypothesis) given that you’ve got a positive test result (the
observation): Pr(C|+). Here’s how you’d substitute the variables into Bayes’ Theorem.

Pr(Cl+) = Pr(+|C)Pr(C)
Pr(+|C)Pr(C) + Pr(+|~C)Pr(~C)

| won’'t go into an explanation of why Bayes’ Theorem is true. Let’s just understand that this
formula, once you plug in the relevant values, gives you a probabilistic answer to the question
‘Do | have it?” in the case that you get a positive or negative test result.

Let’s try some values. The right side of the numerator is just the base rate: Pr(C)

Pr(Cl+) = Pr(+|C)Pr(C)
Pr(+|C)Pr(C) + Pr(+|~C)Pr(~C)

What's the probability that some person chosen from a population has covid? At the moment, in
Sacramento county, where | live, there are about 10,000 cases. And there is a population of
500,000. So that's a 2% rate. Those are officially reported cases. The actual rate maybe 10
times higher, but we will deal with that in a moment.

Now, what is Pr(+|C)?

Pr(Cl+) = Pr(+|C)Pr(C)
Pr(+|C)Pr(C) + Pr(+|~C)Pr(~C)



That is, what is the probability that you would test positive given that you’ve got Covid? This is
the accuracy of the test. It's also sometimes called the likelihood. When someone has it, what
percentage of the time does the test give a true positive result, and what percentage of the time
is the test wrong. One of the problems we’ve been having through the pandemic is that our
tests aren’t very accurate. Let’s suppose that we're using a test that is 85% accurate, or that
Pr(+|C) = .85.

The only other values we need to complete the formula now are Pr(+|~C) and Pr(~C).

Pr(Cl+) = Pr(+|C)Pr(C)
Pr(+|C)Pr(C) + Pr(+|~C)Pr(~C)

For now, since we are assuming that our test is .85 accurate, what is the probability that a
person would have a positive test result but not have it? Pr(+|~C) =.15. And if the base rate of
C in the population is .02, then the Pr(~C), that is the percentage of people who don’t have it, is
.98. So now, we can fill in all the values:

Pr(C|+) = (.85)(.02)
(.85)(.02) + (.15)(.98)

PrCl+)=  .017
164
Pr(Cl+) = .1036

That is, with our assumed values, the probability that some random person selected out of the
population, given a positive test result with 85% accuracy, is about 10%.

But wait, how can that be? A positive test result means you’ve got it, right? No, in this case it
just means that the probability of someone’s having it went from 2% to 10% with the positive
test. Think of it this way. The test here is a pretty poor test. It only get the answer right 85% of
the time. (If the test got it right 50% of the time, then it would be no better than flipping a coin to
find out if you've got it.) And the other problem is that in this example, the base rate, the
probability that some random person in the population has it, is pretty low. It's only 2%. It helps
to see that the general improbability of having it erodes the confidence of the test result. And in
this case, the prior probability or the probability that we started with was just the rate distributed
over the whole population. We took the total number of cases and divided by the total number
of people in the county. If you had some symptoms, or had an exposure, and went to the doctor
and asked for a test, then your prior probability would be higher. We’d have some prior reasons,
or some other evidence to think that your base rate is higher than 2%. Put another way, the
prior probability of having covid is much higher among people who have a sore throat, a fever,
and an exposure, than it is for someone just chosen at random from the population.



Now suppose we give this randomly selected person another test after they get the first positive
one--that’s what a responsible doctor would do. Now we have a different equation because the
base rate, or the prior probability is now 10% from the first test. That is, on the basis of the test
we just took, your probability of having covid has gone up from 2% in the general population to
10%. So we insert that new base rate. And let’'s suppose we are using the same 85% accurate
test. And notice that now since the Pr(C) is .1, then Pr(~C) is .9:

Pr(C|+) = (.85)(.1)
(.85)(.02) + (.15)(.9)

Pr(C|+) = .085
22
Pr(Cl+) = .38

So now, with two positive test results, the probability that you’ve got is is 38%. That'’s still not
probable; it's more likely that you don’t have it now than that you do. But that’s not negligible.
The evidence is mounting that this random person we selected from the population has it.

Now consider what happens when we use a more accurate test. Suppose we have a test that is
95% accurate, and only give the wrong answer 5% of the time. And now, let’s dispose of our
contrived example of selecting someone randomly from the population. Suppose that our
patient has been exposed to someone who has it, and they’ve got some symptoms that are
consistent with covid. Now, before we've even tested, we’ve got some evidence to think that
this person has it. Suppose we assign a 40% probability to their having it, before the test. Now,
what would a positive test result mean?

Pr(C|+) = (.95)(.4)
(.95)(.5) + (.05)(.6)

Pr(C|+) = .38
41
Pr(Cl+) = .93

So now, with a better test, and some other evidence to suspect that this patient has it, it's now
93% probable. This patient very probably has it.

What else can we say about the base rate? In our first examples, we were assuming that
official, reported rate of covid in the population is a good measure of the actual rate. But is that
a good assumption? Probably not. There are a lot more people out there who have it than just
the ones officially reported. Some people get only mildly sick and don’t go to the doctor, some
people get it and don’t get tested, some people get it and never know they’ve gotit. The CDC



has recently said that the real rate of people who have may be 10 times higher than the official

rate. And we’ve got some reasons to think that the CDC is even understating the truth here. If
you talk to someone at a party, the difference between a 2% chance of your being exposed and
a 20% of your being exposed is substantial.

So what happens to our calculation when you take the base rate of covid in the population to be
20% instead of 2%7? And let’s assume a 90% accurate test this time.

Pr(Cl+) = (9)(2)
(.95)(.2) + (.05)(.8)

Pr(C|+) = .32

So even now, with a positive test and a higher rate in the population, you probably don’t have it,
but the evidence is mounting. But if you did another test now and got a positive result, the
Pr(C|+) = .89 Now, you've probably got it.

So far, we’ve dealt with positive test results. And we’ve seen that the relative rarity of the
property in the population erodes a positive test result. But what happens if you get a negative
test result? The short answer is that now, with the property rare in the population, a negative
result is fortified or increased in probability. Suppose that the base rate is 20% and suppose
that this test is 90% accurate. But now we’ve got a negative test result. What'’s the probability
that this person has it?

Pr(C|-) = Pr(-|C)Pr(C)
Pr(-|C)Pr(C) + Pr(-|~C)(~C)

Pr(C|-) = (1)(.2)
(1)(.2) + (.9)(.8)

=.02
74

=.027

So this person’s having covid was at 20% with the rest of the population before the test.
But they tested, got a negative result, and now the probability has gone down to .027. So they
probably don’t have it.

Notice a couple of things here. The left of the numerator, “Pr(-|C)” is now “what is the
probability that you'd get a negative test, given that you’ve got Covid?” And with a test that’s
90% accurate, we will assume that’s .1. And the right of the denominator, “Pr(-|~C)” is “what is
the probability that you’d get a negative test result, given that you don’t have Covid?” That is,
what'’s the probability that the test would get a correct negative result? With a 90% accurate



test, that’s .9. And since the rate of C in the population here is .2, then the rate of people not
having it is 80% or .8.

So there are a couple of lessons we can extract here. First, when you test and get a
positive or negative test result, the answer to the question “Do | have it?” is not as simple as
whether it was a positive or negative test result. The answer is modulated by how accurate the
test is and how prevalent the disease is. If the disease is rare and the test is inaccurate, then a
positive test result doesn’t tell us much. More tests, with positive test results, would fortify the
answer and support the positive conclusion. If the disease is rare and the test is fairly accurate,
then a negative test result is good news; a negative result doesn’t give us certainty, but it makes
it substantially less probable that you have it. Again, more tests, with more negative results,
would fortify that answer. If a person takes multiple tests and gets mixed results, then we are
left in a curious epistemic situation. One positive result and one negative result would cancel
each other out effectively; you’d have two competing pieces of evidence pushing opposite
directions, leaving you just where you started.



