
.slide 1 

Hello everyone, welcome to another AI and games lab. Today, we are going to have another game AI 

design crash course. If you weren’t here the last time, the way this works is that I show you some AI 

problems encountered during the production of actual games, you will then have some time to think 

about them and present your ideas and then I will tell how the designers went about solving them. 

And the first game we’ll be looking at today is- 

.slide 2 

Hitman Absolution – an open-world RPG where you play as a hitman tasked with getting rid of some bad 

people. And this game is quite a marvel of engineering, because- 

.slide 3 

It contains very large crowds of NPCs, potentially more than a 1000 of them at one time. Actually, I’m not 

sure whether this number is from Hitman Absolution or some subsequent release, but there definitely is 

a Hitman game where you can have that many NPCs in a crowd. And these crowd NPCs have to walk 

around, of course, as long as nothing’s happening, but they also have to react to some of the player’s 

actions. For example, let’s say that the player pulls out a gun in public, the bystanders should definitely 

show some reaction to that. And, at times, they also need to exhibit some more complex behaviour. For 

example, if the player picks a fight with one of them, they should be able to fight back. And the question 

is, how to simulate all this without melting your computer. So, any ideas, thoughts, observations? 

 

Questions: 

Forget about the player and suppose we have a crowd of NPCs moving around – how to make this 

efficient? 

How to implement panic or other simple reactions? 

How to implement fighting or other complex reactions? 

 

Ok, let’s take a look at how the original authors achieved this functionality. 

.slide 4 

An obvious bottleneck when it comes to simulating thousands of NPCs milling about is pathfinding. If all 

your NPCs keep generating pathfinding queries all the time, you’re going to have a bad time. So, to help 

with this, the designers created a 2D grid which they overlayed on top of the navmesh to help with this 

process. Each cell of that grid has a flag that indicates whether it is walkable or not and also various 

annotations, such as whether it belongs to an exclusion zone, which is a zone that only some NPCs can 

enter. It also keeps track of all the agents currently within its borders. 

Now, the resources I consulted for this didn’t go into detail about how this actually helped with the 

pathfinding process. I assume that, with this grid in place, the NPCs can just find paths across cells 



marked as walkable instead of querying the navmesh and can also coordinate with all the other agents 

present in those cells to avoid crashing into one another. 

Also, it can maybe help with finding good locations. For example, if an NPC wants to get to a hot dog 

stand, then they can find a cell that’s closest to it and head there. 

.slide 5 

The navigation process entails a lot of comparisons of NPC attributes, so the designers used some neat 

memory tricks to make it more efficient. One thing they did was, they split the NPCs’ attributes into core 

attributes and all the rest and put all of the core attributes of all the NPCs into one chunk of memory. 

This allowed for nice memory alignment and also resulted in less cache misses, making the process more 

efficient both in terms of time and memory. 

Another trick they used was that, instead of having all the cells store their attributes separately, they 

created arrays, one for each attribute, and had the attributes for a given cell be stored on the same index 

in all the arrays. So, if you wanted to fetch an attribute for, say, cell number 4, you would get the array in 

which the values for that attribute are stored and look at the value at index 4. 

.slide 6 

The actual AI of the NPCs is a finite state machine. When nothing much is happening, they have 3 

navigation states – Idle, Pending walk and Walk. In reaction to the player’s actions, they can also enter 

other states such as Alert, Dead, Prone or Panicked – more on that on the next slide – and every NPC’s 

decides whether it should change its state or not at every game frame. 

.slide 7 

Now, how does the player influencing the NPCs actually work? When the player does something to 

which the NPCs should react, behaviour zones are created around the player which notify all the agents 

within them that something is going on. 

For example, when the player pulls out a gun, three behaviour zones are created, as you can see on the 

slide. The NPCs that are in the red and blue zones go prone – which means that they will get on their 

knees and cower before the player. The NPCs in the green zone will go alert, so they will freeze and stare 

at the player. 

And I imagine that, if the player starts shooting, that’s when the characters will panic and start trying to 

flee. 

.slide 8 

Processing 1000 navigation queries at ones would be a problem, of course, as well as quite redundant, 

since all the NPCs will be heading to just a couple of exits. Instead, the NPCs try to follow directions 

stored in the cells of that 2D grid we talked about, which lead to the nearest exit – these are called panic 

flows and they are precomputed for every cell and every exit. 

As I mentioned at the beginning, the NPCs sometimes need to exhibit more complex behaviour. 

However, running a complex behaviour tree for every NPC probably isn’t feasible when you have 

hundreds of them. So, instead, a number of these behaviour trees are instantiated at the start of the 



game and, depending on the circumstances, any NPC can become temporarily “possessed” by one of 

them, effectively being upgraded into a more complex AI agent. 

And that’s it for Hitman. Game number 2 on today’s menu is- 

.slide 9 

The Last of Us. Yet another post-apocalyptic zombie-themed RPG, this time taking place in a world where 

a fungus has infected much of the population. The player must traverse the ruins of cities while 

defending themselves against both zombies and humans. They are accompanied on this journey by an AI 

companion named Ellie – or rather, storywise, they are accompanying her – and she is who we’re going 

to be taking a look at today. 

Ellie can do quite a few things, such as actively helping in combat and gifting the player ammo or health 

packs. We’re not going to be taking a look at all of that, instead, we are going to focus on arguably her 

most foundational behaviour. So, here is the problem specification. 

.slide 10 

You have an open-world RPG. The player has to use stealth to avoid and ambush enemies. Ellie, the AI 

companion, constantly follows them around. The questions are – what following behaviour should the 

companion exhibit? How should the companion behave when the player is in stealth mode? And how 

should these behaviours be implemented? 

 

Questions: 

How should following the player when nothing much is happening be implemented in order for the 

behaviour to look natural? (We’re interested in how the AI picks its next position, not in how it pathfinds.) 

How should it be implemented when the player is trying to be stealthy? 

 

Alright, let’s take a look at the original solution. 

AI companions can be quite a bother – from walking at half the player’s speed to actively getting in the 

player’s way, there’s a lot that can go wrong when implementing them. The developers of The Last of Us 

were aware of this and were determined to create a believable character that the players would 

genuinely care about – which, by the way, led them to scrapping their entire system 5 months before 

shipping the game and starting from scratch. 

I would like to start by sharing two quotes from one of the authors. 

.slide 11 

“Characters give the illusion of intelligence when they are placed in well thought-out setups, are 

responsive to the player, play convincing animations and sounds, and behave in interesting ways. Yet all 

of this is easily undermined when they mindlessly run into walls or do any of the endless variety of things 



that plague AI characters. Not only does eliminating these glitches provide a more polished experience, 

but it is amazing how much intelligence is attributed to characters that simply don’t do stupid things.” 

.slide 12 

“As a general rule, characters don’t need complex high-level decision-making logic in order to be 

believable and compelling and to give the illusion of intelligence. What they need is to appear grounded 

by reacting to and interacting with the world around them in believable ways.” 

In accordance with this line of thinking, the people behind The Last of Us put great emphasis on 

perfecting all the little behaviours of their AI agents, and especially Ellie, so that they would come off as 

believable. The most basic of these behaviours, for Ellie, was following the player. 

.slide 13 

To ensure that she was always in a reasonable position, the authors started by defining a follow region 

around the player. Then, they did three steps of raycasting. In the first step, they cast rays from the 

player to the follow region to make sure there was a clear line of movement there. Each of these rays 

generated a candidate position, if it reached the follow region. Then, from each of these positions, they 

cast a ray forward to make sure that the character wasn’t going to walk into a wall. This generated a set 

of forward positions. Finally, from each of these positions, the last set of rays was cast back to the player 

to make sure that Ellie wouldn’t wind up putting an obstacle between herself and the player. Without 

this, she could walk behind fences or the other sides of doors. 

So, that takes care of normal walking. Now, what about stealth mode? 

.slide 14 

To find a good cover position for Ellie, the authors started by reusing a tool they were already using for 

the human enemies, who also take cover when fighting with the player. This tool analysed the collision 

mesh and pre-calculated potential cover spots. This was good enough for enemies, but not for Ellie. The 

authors therefore added a system where rays would be cast from the player’s position in a circle and 

then an analysis would be performed on their intersections with the scene to find more potential covers. 

Specifically, each ray generated an intersection point and the normals and locations of the points were 

then compared and nearby points with a similar orientation were combined into a single cover. 

The two sets of potential cover places were combined and compared using various metrics to pick the 

best one. These metrics included current visibility to enemies, predicted future visibility, and proximity to 

the player. 

So that’s basically their solution to the problem that I outlined. However, this doesn’t really do the 

source article justice, because it’s filled with these little insights about what the designers did to make 

Ellie’s character feel more human. For example, when implementing Ellie’s follow behaviour, they had to 

decide what she should do when the player would try to walk over the place where she was standing. 

Their first thought was to just have her move out of the way so as to not impede the player’s movement. 

However, they decided that this seemed unnatural and, in playtests, they found that players usually 

didn’t try to run into her if she was standing somewhere. They therefore decided that she wouldn’t get 

out of the way until the last second and then would reprimand the player for their behaviour. 



Or, another decision they made was to almost never have Ellie cheat in any way, such as teleporting or 

dealing more or less damage than the player, as that would make her feel less natural and break the 

immersion. 

There are a few exceptions to this though and one of them is what happens when the player is trying to 

be stealthy and the enemies catch sight of Ellie. This is a rare occurrence, thanks to the system outlined 

here, but it does happen once in a while and the designers had to make a decision about what should 

happen in such a case. At first, they tried to stick to their philosophy and have the enemies react by 

attacking, but they found this to be just frustrating for the players, so, instead, they decided to make Ellie 

invisible for the enemies in such circumstances. 

There are many more of these nuggets of insight into other behaviours in the article about Ellie and then 

also the articles about human enemies and infected enemies, so I definitely recommend you check them 

out if you’re interested in these sorts of things. Moving on, we have one more game to look at today and 

that is- 

.slide 15 

Sims 3. 

.slide 16 

This is a social simulation game where the player gets to create a bunch of custom characters and then 

navigate them through their lives. 

This means that the Sims – as the NPCs are called – have to respond to the player’s commands, but also 

be able to act autonomously. It also means that, since this is supposed to be a simulation of human 

society, the Sims need to exhibit a wide range of different behaviours and personalities – it is therefore 

out of the question to just control the Sims using some simple scripts. So, the question is, how to 

implement all this? How to make sure that the Sims are varied and believable, that they can behave 

autonomously when the player isn’t controlling them and that they act in line with the player’s 

directions, not just momentarily but throughout the game – for example, it would be quite odd if the 

player told some Sims to get married and they immediately broke up. So, basically, how to simulate a 

human society, that is the question. That, obviously, is quite a complex task, so let’s try to break it down 

into smaller pieces. 

 

Questions: 

What needs should a Sim have? 

How should a single Sim decide how to satisfy them without the player's control? 

How to make sure they aren't completely deterministic and therefore robotic and predictable? 

How to make sure that the Sim assigns a higher importance to some needs, such as hunger, compared to 

boredom, for example? 

How to make it easily extendable? 



How to add personality to the Sims? 

How to construct believable social scenarios using the system we've discussed thus far? 

How to make sure the sure the system isn't too computationally intensive? 

How should the player's input be taken into account? 

 

Ok, if there are no more ideas, let me tell you what the designers did. 

.slide 17 

First of all, the Sims all have needs, or motives, as the designers called them – I’m going to call them 

needs because I think that’s a more fitting term. These are modelled on human needs. So, they’re things 

like ‘huger’ – that’s pretty self-explanatory – social – that corresponds to our need for socializing – 

bladder – that corresponds to our need to urinate – etc. 

All of these needs have metres associated with them which are constantly ticking down. They can be 

refilled by interacting with the world in various ways. However, the Sims themselves don’t actually 

possess the knowledge about how to do that – instead, all the know-how is stored in the objects 

themselves. These advertise themselves to the Sims, providing information about which needs they can 

satisfy and by how much. 

So, when deciding what to do, a Sim queries its surroundings – this usually means the house that it’s in – 

and the objects, which includes other Sims, all tell it which needs they can satisfy. The Sim then scores 

these possible actions based on the current state of its needs and picks one. It doesn’t always pick the 

best one, instead, it takes the top 3, I think, and constructs a probability distribution for them based on 

their scores and picks at random using that distribution. That makes the Sims less robotic and 

predictable and also means that they won’t be perfect at satisfying their needs, which gives the player 

something to do. 

Now, it would be pretty weird if the Sim was both starving to death and extremely bored and they chose 

to go to play a game instead of getting something to eat – I’m aware that may be relatable to some of 

you, but it isn’t regular human behaviour. To prevent this, the needs have different weights associated 

with them. 

.slide 18 

These weights are dictated by designer-defined curves. You can see some examples here. So, if you take 

a look at the hunger curve, this means that when the hunger metre is full, meaning that the Sim is 

satiated, the weight for this need is very low. In fact, I’d expect it to be zero, but it’s hard to tell from this 

graph. And, as the Sim gets hungrier, the associated weight grows exponentially. 

.slide 19 

Other needs, like social and fun, have more of a u-shaped curve associated with them. This is once again 

meant to simulate human behaviour. If you’re out with friends and having fun, it doesn’t happen that 

you suddenly go ‘my fun metre is satiated, time to quit’. Analogously, this means that, if a Sim is having 



fun, it will be motivated to keep having fun. You can also notice however, that these curves never go as 

high as the hunger curve. 

.slide 18 

.slide 19 

So, if the Sim is really hungry, that need will always override these. 

And, besides weights computed from these needs, other weights can also be taken into account when 

computing scores, for example, ones based on distance or the Sims’ personalities – we’ll get into those in 

a sec. 

.slide 20 

Now, the Sims aren’t the only entities in the game that have needs, the town also has them and some 

venues do too. The town’s needs are things like employment rate and gender balance. It can fulfil these 

needs by generating life events for the Sims. So, some Sims get a job, some Sims die, etc. 

As for venues, such as restaurants for example, their needs are things like ‘there should be X number of 

people here at such and such time of day’. To fulfil these, they can give nearby Sims the need to, for 

example, eat outside, in the case of the restaurant. This strategy of giving Sims additional needs to alter 

their behaviour can actually be pretty useful for various things, as we’ll see. 

.slide 21 

Besides needs, Sims also have their own personalities. In the first two games, this were defined using 

only a couple of traits that were common for every Sim, just dialled up or down. However, for Sims 3, the 

designers really upped their game and introduced a new system of character traits. There are around 60 

of these in the base game, I think, and each Sim can have up to five, creating loads of possibilities. 

These can do a few things. First of all, remember how I said that objects advertise to the Sims what 

needs they can help satisfy? Well, these advertisements include a score – that is, the number by which 

the associated need’s metre would be increased. And these personality traits can apply multipliers to 

these scores, which can create Sims with different preferences for leisure activities or food. 

Besides that, the traits can also unlock specific actions for the Sim, give them additional needs and also 

adjust their animations, so the way they walk, idle, etc. 

Now, the strategy of adding needs can also be used for adjusting a Sim’s behaviour in specific situations, 

especially social ones. For example, when visiting someone’s house, a Sim may be given additional needs 

in order to be incentivised to act in a socially appropriate way. 

.slide 22 

However, social situations are quite varied and complex and this just isn’t enough to produce halfway 

believable results. To remedy this, the designers introduced so-called production rules. These are rules 

that have some conditions on one side and the outcome of an interaction on the other. For example, 

they can be used to define an outcome of an interaction when a Sim is telling a joke to another Sim that 

is angry with them, or that likes them, or that’s already heard that Sim tell the joke ten times. For every 



interaction, these rules are sorted by specificity and then the most specific one is applied. Supposedly, 

there are thousands of these handcrafted rules in Sims 3. 

.slide 23 

The system that I just described to you probably isn’t all that computation-heavy, but if you run it for a 

lot of Sims at the same time, you may very well end up with some performance issues. So, to prevent 

this, the lives of Sims that the player can’t see are simulated only at a very low level of detail. For 

example, when the player sees a Sim again, the values of their needs metres will be decided based on 

predefined curves. For example, hunger has a curve like this (draw this). The start is when the Sim wakes 

up, at which point they are moderately hungry, then these three spikes correspond to the times they 

have breakfast, lunch and dinner. And, if the player sees a Sim at midafternoon, let’s say, their hunger 

value will be this (draw). 

Also, important life events are generated for these Sims once in a while, at random, I think. 

.slide 24 

And, of course, we can’t forget about the player’s role in all this. As I said at the beginning, the Sims 

should take into account the player’s actions, so they shouldn’t break the story that the player is trying 

to tell. The achieve this, the designers implemented a bunch of so-called ‘autonomous feedback loops’. 

Let me give you an example. The Sims’ relationships with other Sims are defined using metres that 

reflect how much a Sim likes another Sim. I think each Sim has one such metre for every other Sim, but 

I’m not sure. The point is, the value of this metre is increased when they have a positive interaction with 

another Sim, independent of whether it was commanded by the player. So, if the player instructs two 

Sims to hang out and they have a good time, they will be incentivised to do so more in the future. 

Now, there is lots more to the AI of the Sims – I didn’t even get into their wants and fears and the 

hand-crafted trees that govern their life trajectories, but we could probably have a whole lecture just 

about the AI of the Sims, so I think this is enough. 

.slide 25 

So, that is it for today, thank you for your attention and see you in another two weeks for what will be 

the last instalment in this series. 

 


