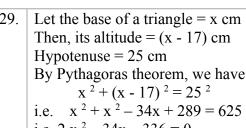
SET-1

Pre-Board Examination (2025-26) Class- X Subject: Mathematics Basic (241) Marking Scheme

Section A				
1.	(D) 4	1		
2.	(C) $x^2 - x - 12$	1		
3.	(D) 0, 8	1		
4.	(B) an AP with $d = 4$	1		
5	(B) 3	1		
6.	(A)(2,2)	1		
7.	(B) 3	1		
8.	(A) $\frac{4}{3}$	1		
9.	$(D)\frac{1}{13}$	1		
10.	(A) 2	1		
11.	(B) 45°	1		
12.	(D) 110°	1		
13.	(C) 3 cm	1		
14.	$(A) \qquad \frac{\pi r^2 \theta}{360}$	1		
15.	(A) a cone and a cylinder	1		
16.	(B) 2r cm	1		
17.	(B) median	1		
18.	(B)315	1		
19.	A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1		
20.	D) Assertion (A) is false but reason (R) is true.	1		
	Section B			
	Section B consists of 5 questions of 2 marks each.			
21.	(A) It can be observed that, $2\times5\times7\times11+11\times13=11\times(70+13)=11\times83$ which is the product of two factors other than 1. Therefore, it is a composite number. OR	2		
		1		
	(B) The smallest number which is divisible by any two numbers is their LCM.	1		
	So, Number which is divisible by both 306 and 657 = LCM (306, 657)	1		
	Since, $306 = 2 \times 3^2 \times 17$ and $657 = 3^2 \times 73$			
	LCM (306, 657) = $2 \times 3^2 \times 17 \times 73 = 22338$			
22.	Let P(-1 , 6) divides joining of A(-3 , 10) and B(6 , -8) in the ratio $m_1:m_2$	2		
	Then, we know			
	$-1 = \frac{(m1 \times 6) + (m2 \times -3)}{m1 + m2} \qquad \text{[since } x = \frac{(m1 \times x2) + (m2 \times x1)}{m1 + m2}$			
	i.e $m_1 - m_2 = 6 m_1 - 3 m_2$			
	i.e. $-m_1 - 6m_1 = m_2 - 3m_2$			
	i.e. $-7m_1 = -2m_2$			
	i.e. $m_1 : m_2 = 2:7$			
	So, the required ratio is 2:7			
23.	Since $P(x, y)$ is equidistant from the point $A(3, 6)$ and $B(-3, 4)$,	2		

	S_0 , $PA = PB$	
	i.e. $PA^2 = PB^2$	
	i.e. $(3-x)^2 + (6-y)^2 = (-3-x)^2 + (4-y)^2$	
	i.e. $9 - 6x + x^2 + 36 - 12y + y^2 = 9 + 6x + x^2 + 16 - 8y + y^2$ i.e. $-6x + 36 - 12y = 6x + 16 - 8y$	
	i.e. $-6x + 36 - 12y - 6x - 16 + 8y = 0$ i.e. $-12x - 4y + 20 = 0$	
	i.e. $3x + y - 5 = 0$	
	This is the required relation between x and y.	
24.	Since $\cos 60^{\circ} = \frac{1}{2}$ and $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$,	2
	So, $A + B = 60^{\circ}$ (i) And $A - B = 30^{\circ}$ (ii)	
	Solving equations (i) and (ii), we get	
	$A = 45^{\circ}$ and $B = 15^{\circ}$	
25.		1
	Numbers divisible by 5 are 10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90	+
	Number of Fvaourable outcomes = 17	1
	P(E) = 17/81	
	(OR)	
	A coin is tossed two times so the possible outcomes are (H,H) , (H,T) , (T,H) , $(T,T) = 4$	
	Getting at most one head = (H,T) , (T,H) , (T,T)	
	so, the probability of getting at most one head = $\frac{3}{4}$	
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26.	Proof as given in NCERT textbook example.	3
27.	Find the zeroes of the polynomial $6x^2 + 5\sqrt{3}x - 3$ by factorisation method and verify the	1
	relation between the zeroes and the coefficients of the polynomial.	+
	Here, $p(x) = 6x^2 + 5\sqrt{3}x - 3$	1
	$=6x^2+(6\sqrt{3} - \sqrt{3})x-3$	1+
	$=6x^2+6\sqrt{3} x - \sqrt{3}x-3$	1
	$= 6x (x + \sqrt{3}) - \sqrt{3} (x + \sqrt{3})$	
	$= (x + \sqrt{3}) (6x - \sqrt{3})$	
	So, the zeros of the polynomial $6x^2 + 5\sqrt{3}x - 3$ are $-\sqrt{3}$ and $\frac{\sqrt{3}}{6}$	
	Now, sum of zeros = $-\sqrt{3} + \frac{\sqrt{3}}{6}$	
	$= -\frac{5\sqrt{3}}{6} = -\frac{Coefficient\ of\ Coefficient\ of\ x}{Coefficient\ of\ Coefficient\ of\ x^2}$	
	Product of zeros = $-\sqrt{3} \times \frac{\sqrt{3}}{6}$	
	$= -\frac{3}{6} = -\frac{1}{2} = \frac{Constant\ term}{Coefficient\ of\ Coefficient\ of\ x^2}$	
28.	For Given, To Prove, Construction 1-mark	3
	For Correct Proof 2-marks	



i.e.
$$x^2 + (x - 1/)^2 = 25^2$$

i.e. $x^2 + x^2 - 34x + 289 = 625$
i.e. $2x^2 - 34x - 336 = 0$

i.e.
$$x^2 - 17x - 168 = 0$$

i.e.
$$x^2 - (24-7) x - 24 x 7 = 0$$

i.e.
$$x^2 - 24x + 7x - 24x7 = 0$$

i.e.
$$x(x-24) + 7(x-24) = 0$$

i.e.
$$(x - 24)(x + 7) = 0$$

so,
$$x = 24$$
, -7

Since x is taken length so, it cannot be negative.

Therefore, base of the triangle = 24 cm

And, its altitude =
$$x - 17 = 24 - 17 = 7$$
cm

OR

+

1

+

1

3

1

1

1

(x - 17) cm

Here, we have

$$a = 6, b = -7, c = 2$$

so, discriminant =
$$b^2 - 4ac$$

$$= (-7)^2 - 4 \times 6 \times 2$$

$$= 49 - 48 = 1 > 0$$
, hence the equation will have real roots.

Now, by Quadratic Formula, we have

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{7 \pm \sqrt{1}}{2 \times 6} = \frac{7 \pm 1}{12} = \frac{7 + 1}{12}, \frac{7 - 1}{12} = \frac{8}{12}, \frac{6}{12} = \frac{2}{3}, \frac{1}{2}$$

Therefore, the required roots are $\frac{2}{3}$ and $\frac{1}{2}$.

30. We have, LHS =
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2$$

$$= \sin^2 A + 2\sin A \csc A + \csc^2 A + \cos^2 A + 2\cos A \sec A + \sec^2 A$$

[using identity
$$(a + b)^2 = a^2 + 2ab + b^2$$
 1

$$= (\sin^2 A + \cos^2 A) + 2\sin A \csc A + \csc^2 A + 2\cos A \sec A + \sec^2 A$$

$$= 1 + 2 + \csc^2 A + 2 + \sec^2 A$$

[since
$$\sin^2 A + \cos^2 A = 1$$
, $\sin A \csc A = 1$, $\cos A \sec A = 1$

$$= 5 + (1 + \cot^2 A) + (1 + \tan^2 A)$$

[since
$$\csc^2 A = 1 + \cot^2 A$$
 and $\sec^2 A = 1 + \tan^2 A$

$$= 7 + \tan^2 A + \cot^2 A = RHS$$

OR

We have, LHS =
$$(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \alpha)$$

=
$$\sin \alpha x \tan \alpha + \cos \alpha x \tan \alpha + \sin \alpha x \cot \alpha + \cos \alpha x \cot \alpha$$

$$= \sin \alpha x \frac{\sin \alpha}{\cos \alpha} + \cos \alpha x \frac{\sin \alpha}{\cos \alpha} + \sin \alpha x \frac{\cos \alpha}{\sin \alpha} + \cos \alpha x \frac{\cos \alpha}{\sin \alpha}$$

[since
$$tanA = \frac{sinA}{cosA}$$
 and $cotA = \frac{cos A}{sinA}$

$$\underline{\hspace{0.5cm}} sin^{3}\alpha + sin^{2}\alpha cos\alpha + sin\alpha cos^{2}\alpha + cos^{3}\alpha$$

$$sin\alpha cos\alpha$$

$$= \frac{(\sin^3 \alpha + \cos^3 \alpha) + (\sin^2 \alpha \cos \alpha + \sin \alpha \cos^2 \alpha)}{(\sin^3 \alpha + \cos^3 \alpha)}$$

$$(\sin\alpha + \cos\alpha)(\sin^2\alpha + \cos^2\alpha - \sin\alpha\cos\alpha) + (\sin\alpha\cos\alpha)(\sin\alpha + \cos\alpha)$$

[using identity,
$$a^3 + b^3 = (a + b)(a^2 + b^2 - ab)$$

$$= \frac{(\sin\alpha + \cos\alpha)[\sin^2\alpha + \cos^2\alpha - \sin\alpha\cos\alpha + \sin\alpha\cos\alpha]}{\sin\alpha\cos\alpha}$$

$$=\frac{(\sin\alpha+\cos\alpha)[1-0]}{\sin\alpha\cos\alpha}$$

31. Here, we are

Area of the design

= 6 X Area of a segment of the circle

[since designed is made on six segments

$$= 6 \times \left[\frac{\theta}{360} \pi r^2 - \frac{1}{2} r^2 \sin \theta \right]$$

[since, Area of segment = $\frac{\theta}{360}\pi r^2 - \frac{1}{2}r^2 \sin \theta$

$$= 6 X r^{2} \left[\frac{60^{\circ}}{360} \pi - \frac{1}{2} \sin 60^{\circ} \right]$$

[a segment is subtending an angle 60° at the centre

$$= 6 \times 42 \times 42 \left(\frac{1}{6} X \frac{22}{7} - \frac{1}{2} X \frac{\sqrt{3}}{2} \right)$$
$$= \frac{6 \times 42 \times 42}{84} (44 - 21\sqrt{3})$$

$$= 126 (44 - 21 \times 1.7)$$

$$= 126 (44 - 21 \times 1.7)$$

$$= 126 (44 - 35.7)$$

$$= 126 \times 8.3$$

$$= 1045.8 \text{ cm}^2$$

Now, cost of making the design = Area of design X cost per $100cm^2$

$$= 1045.8 \text{ X} \frac{20}{100}$$

$$= 209.16$$

Therefore, the cost of making the designs at the rate of ₹20 per 100cm² is ₹209.16.

Section D

Section D consists of 4 questions of 5 marks each.

32. From first eqn., we have

1 10111	IIISt	<i>-</i> 411.,	<u>v</u> v C 11
X	0	2	
у	-3	0	
$y = \frac{3}{2}$	$\frac{x-6}{2}$,		

From second eqn., we have

X	0	3	
y	2	4	
	17 –	2 <i>x</i> +6	
	у —	3	,

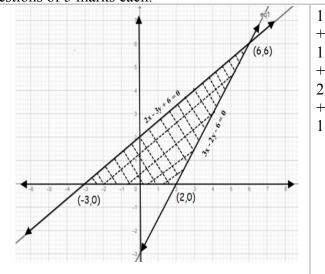
From the graph, x = 6, y = 6 is the solution of given equations.

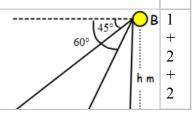
Now, area of
$$\Delta = \frac{1}{2}$$
 b X h
= $\frac{1}{2}$ X 5 X 6
= 15 sq units

33. Let B is a balloon h m vertically above a straight road from where the angles of depression of two cars G and C,100 m apart at an instant are found to be 45° and 60° respectively.

Let
$$CA = x m$$
.

From rt $\triangle BAC$, we have





1

+

1

+

1

$$\frac{CA}{BA} = \cot 60^{\circ} \qquad [\ since \ \frac{base}{perpendicular} = \cot \theta$$
 i.e. $x = h \ X \ \frac{1}{\sqrt{3}} \ \dots \dots (i) \qquad [\ since \ cot 60^{\circ} = \ \frac{1}{\sqrt{3}}$

Also from rt $\triangle BAG$, we have

$$\frac{GA}{BA} = \cot 45^{\circ}$$

i.e.
$$100 + x = h X 1$$
 [since $cot 45^{\circ} = 1$

i.e.
$$100 + h X \frac{1}{\sqrt{3}} = h$$
 [From eqn. (i)

i.e.
$$100\sqrt{3} + h = h\sqrt{3}$$

i.e.
$$h = \frac{100}{\sqrt{3}-1} = \frac{100}{\sqrt{3}-1} X \frac{\sqrt{3}+1}{\sqrt{3}+1}$$
 [Rationalising denominator
$$= \frac{100(\sqrt{3}+1)}{3-1}$$
$$= 50(\sqrt{3}+1)m$$

So, the height of the balloon is $50(\sqrt{3} + 1)$ m.

OR

Let the angle of elevation of the top of a tower T having height h m from certain point A is 30°. If the observer moves 20 metres towards the tower at point B, the angle of elevation of the top increases by 15° i.e. 30°+15°=45°. Let BO=x m.

From rt Δ TOB, we have

$$\frac{BO}{TO} = \cot 45^{\circ}$$
 [since $\frac{base}{perpendicular} = \cot \theta$

i.e.
$$x = h X 1(i)$$
 [since cot 45° = 1

Also from rt ΔTOA , we have

$$\frac{AO}{TO} = \cot 30^{\circ}$$

i.e. 20+ x = h X
$$\sqrt{3}$$
[since cot30° = $\sqrt{3}$

i.e.
$$20+ h = \sqrt{3} h$$
[From eqn. (i)

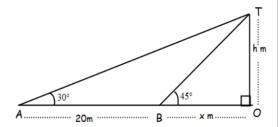
i.e.
$$\sqrt{3}\ h-h=20$$

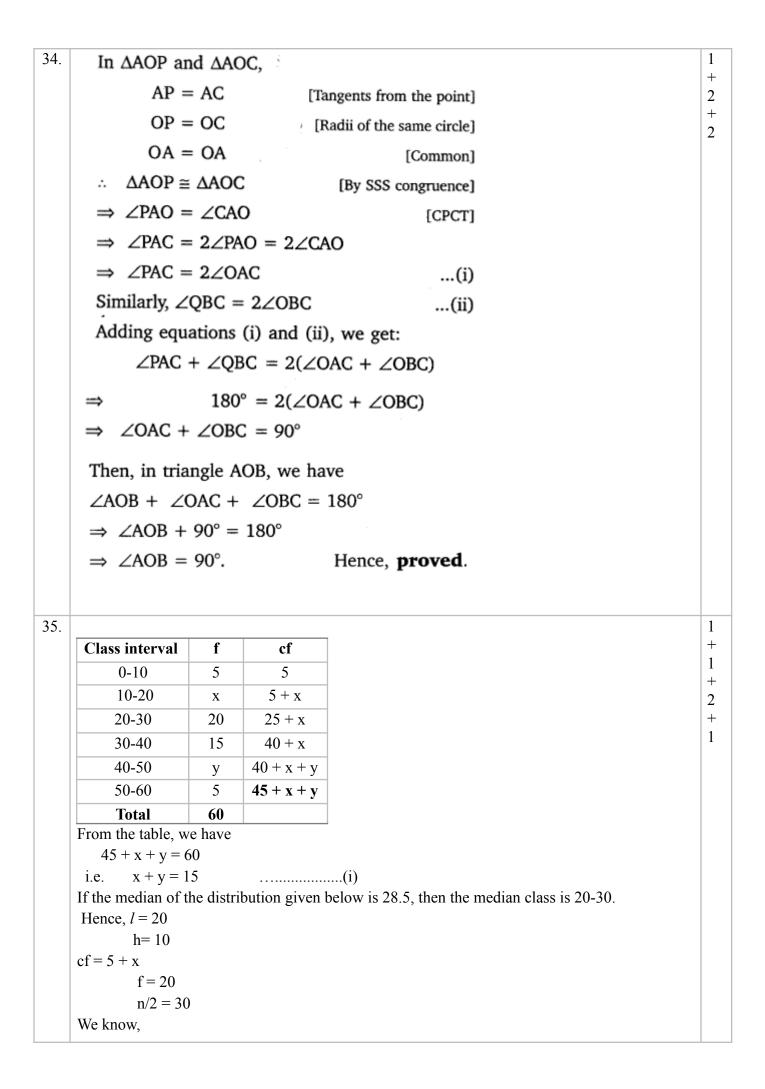
i.e.
$$h(\sqrt{3}-1)=20$$

i.e.
$$h = \frac{20}{\sqrt{3}-1}$$

 $= \frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ [Rationalising denominator $= \frac{20(\sqrt{3}+1)}{3-1}$
 $= 10(\sqrt{3}+1) \text{ m}$

So, the height of the tower is $10(\sqrt{3} + 1)$ m.





$$Median = l + \left(\frac{\frac{n}{2} - cf}{f}\right) X h$$

i.e.
$$28.5 = 20 + \left[\frac{30 - (5 + x)}{20}\right] \times 10$$

i.e.
$$8.5 \times 2 = 25 - x$$

i.e.
$$x = 25 - 17 = 8$$

Substituting x = 8 in eqn. (i), we get

$$8 + y = 15$$

i.e.
$$y = 7$$

Therefore, the value of x is 8 and y is 7.

OR

Here, h = 3.

Class interval	Frequency (f_i)	Cumulative frequency (cf)	Class marks (x _i)	$u_i = \frac{x_i - c}{h}$	$f_i u_i$
1-4	6	6	2.5	-2	-12
4 – 7	$30(f_1)$	36(c)	5.5	-1	-30
7 – 10	40(f _m)	76	8.5 = a	0	0
10 – 13	16(f ₂)	92	11.5	1	16
13 – 16	4	96	14.5	2	8
16 – 19	4	100	17.5	3	12
			n = 100		$\sum f_i u_i = -6$

$$n = 100$$

Since 40 is the maximum frequency, so the median class is (7 - 10).

Here, l = 7, $f_m = 40$, cf = 36 and h = 3.

$$\therefore \mathbf{Median} = l + \left(\frac{\frac{n}{2} - cf}{f_m}\right) \times h$$

$$= 7 + \left(\frac{50 - 36}{40}\right) \times 3 = 7 + \frac{14}{40} \times 3$$

$$= 7 + \frac{21}{20} = 7 + \frac{10.5}{10}$$

$$= 7 + 1.05 = 8.05$$

Mean =
$$a + \frac{\sum f_i u_i}{\sum f_i} \times h = 8.5 + \frac{(-6)}{100} \times 3$$

= $8.5 + \frac{(-18)}{100} = 8.50 - 0.18 = 8.32$.

Now since the maximum number of letters in surnames = 40

∴ Modal class = 7 - 10

.. **Mode** =
$$l + \left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right) \times h$$

= $7 + \left(\frac{40 - 30}{80 - 30 - 16}\right) \times 3$
= $7 + \frac{10}{34} \times 3 = 7 + \frac{30}{34} = 7 + 0.88$
= **7.88**.

Section E

Section E consists of 3 case study based questions of 4 marks each.

Given

Pipes are stacked in rows with counts forming an arithmetic sequence that decreases by 1 each row. Bottom row = 20, next = 19, etc. Total pipes = 200.

(i) Number of rows

Let the number of rows be r. Topmost row will have 20-(r-1) pipes. Sum of the r terms:

$$S = \frac{r\big(\mathrm{first} + \mathrm{last}\big)}{2} = \frac{r\big(20 + [20 - (r-1)]\big)}{2} = \frac{r(41 - r)}{2}.$$

Set S=200:

$$\frac{r(41-r)}{2} = 200 \quad \Rightarrow \quad r(41-r) = 400.$$

Solve the quadratic:

$$r^2 - 41r + 400 = 0 \implies (r - 16)(r - 25) = 0.$$

Possible roots r=16 or r=25. r=25 would make the top row negative, so take r=16.

Answer (i): 16 rows.

(ii) Pipes in the topmost row

Topmost = 20 - (16 - 1) = 20 - 15 = 5.

Topmost row: 5 pipes.

They also asked: Find the number of pipes lying between the top and bottom row.

If "between" means excluding top and bottom rows, then

pipes between =
$$200 - (20 + 5) = 175$$
.

If they meant **number of rows between**, that is 16-2=14 rows.

Answer (ii): Topmost = 5 pipes; pipes between top & bottom (excluding them) = 175 (or 14 rows between).

(iii) A stack of 105 pipes arranged in 6 rows — find bottom row

Let bottom row =b. Rows go b,b-1,b-2,b-3,b-4,b-5. Sum:

$$S = rac{6(b+(b-5))}{2} = 3(2b-5) = 6b-15.$$

Set 6b - 15 = 105:

$$6b = 120 \Rightarrow b = 20.$$

Answer (iii): Bottom row has 20 pipes.

37. i) Volume of Sphere = $\frac{4}{3}\pi r^3 1$

ii) Shape the Paridakshinapatha is forming a ring.1

iii) volume of the stupa = volume of hemisphere + volume of the cuboid

$$= \frac{2}{3}\pi r^3 + lbh$$

$$=\frac{2}{3}X\frac{22}{7}X14^3+8m \times 6m \times 4m$$

$$= 5749.33 + 192$$

$$= 5941.33 m^3 2$$

OR

The cloth require to cover the hemispherical dome

= CSA of hemisphere – Area of base of cuboidal top

$$= 2\pi r^{2} - lb$$

$$= 2 X \frac{22}{7} X 14^{2} - 8 X 6$$

= 1232 - 48

$$= 1184 m^2 2$$

38. i) Similarity of triangles.

ii) 1.6:1.2=4:3

1

4

4

iii) Since heights of objects and their shadow at same time form similar triangles so,

$$4:3=20:x$$

i.e.
$$x = \frac{20 \times 3}{4} = 15m$$

So, the length of shadow of Alina's house is 15m.

2

OR

Since heights of objects and their shadow at same time form similar triangles so,

$$4:3=h:54$$

i.e.
$$h = \frac{4 \times 54}{3} = 72 \text{m}$$

2