Google Summer of Code 2018 Proposal
Format-Preserving YAML

Wisnu Adi Nurcahyo <wisn.adn@gmail.com>
Telkom University, Indonesia

Google
Summer of Code

Haskell

organization

mailto:wisn.adn@gmail.com

Summary

Parse YAML with Haskell native code into a data structure and manipulate it natively in Haskell
then transform it back into YAML.

Motivation

Why Haskell Organization?

Haskell is my favorite pure functional programming language. The main reason is to improve my
Haskell skill. Therefore, Haskell organization is the best choice. Indonesia has a lot of
programmers. However, just a few of them who use Haskell. In Lambda Jakarta (a functional
programmer community), there are about 60 members who joining the Haskell channel. In
Komunitas Haskell Indonesia (Indonesian Haskeller community) on Facebook, there are about 216
members who have joined. If we compare with the largest Indonesian programmer community,
PHP Indonesia, which is about 149,782 members who have joined, only less than 2% of them who
have ever know Haskell. Joining GSoC in Haskell organization is a really big start to me for
improving my functional programming skill through Haskell and bring the Haskell community in
Indonesia up. How is it even possible for me? I'm now a Bandung liaison in Lambda Indonesia, a
functional programmer community in Indonesia, which have planned to build Lambda Bandung.

Why Working on Parser?

| have a big interest in the programming language. That makes me want to be a computer
scientist. | think that starting from the parser is a good start. Since | have interest in functional
programming, | want to be a computer scientist who does research in the programming language,
especially with functional programming paradigm. Although now I'm just a sophomore, | have a
big curiosity and a strong ambition to reach my dream. That’s made read all unnecessary stuff in
my undergraduate study. However, it is necessary for my dream. | read some stuff such as lambda
calculus, category theory, parser generator, parser combinator, and so on.

Benefits to Community

1. We could manipulate YAML content via Haskell code without losing a single thing (even its
comment).

2. Easily modify Haskell application config (YAML). Could be used by The Haskell Tool Stack
and other tools.

https://www.facebook.com/groups/haskell.indonesia/
https://www.facebook.com/groups/35688476100/

Project Details

The main idea of format-preserving is to parse, manipulate, and transform it back to its original
form. To put it simply, what we need is to create a lexical analyzer to store YAML tokens based on
YAML Spec. Then, create a data structure for YAML structure so we could easily manipulate it later
in the Haskell program. When the data structure ready, we parse the tokens and construct it using
our own data structure. Create some functions to manipulate it and a special function to
transform it back into YAML structure. Since the main purpose of this project is its correctness, we
need to determine what “correctness proof framework” we will use.

Sometime Stack (The Haskell Tool Stack) ask us to add an extra dependency, manually. This is
one of some problems that often occurred. How is this project actually help us? To understand
better, there is an example below. Suppose that we use the latest Hakyll that need a
pandoc-citeproc-0.13 which is missing in the latest stable Stack LTS. Stack ask us to add the extra

dependency to solve this problem. If Stack could add the extra dependency by itself, wouldn't it be
nice?

Technical Demonstration

YAML Structure

extra-deps:
- hakyll-4.11.0.0

Lexer YAML Tokens Representation

SCALAR(“extra-deps”) MAP(EOL SPACES(2) SEQUENCE([SCALAR(“hakyll-4.11.0.0")])) EOF
Parsed YAML Into a Data Structure

YAML (MAP “extra-deps” (SEQUENCE [SCALAR “hakyll-4.11.0.8"]1))
YAML Manipulation Demo

let yaml = YAML (MAP (SCALAR “extra-deps”) (SEQUENCE [SCALAR “hakyll-4.11.0.0"]))
yaml’' = manipulate yaml (pushToSequence “extra-deps” “pandoc-citeproc-0.13")
in yaml’

-- > YAML (MAP (SCALAR “extra-deps”) (SEQUENCE [SCALAR “hakyll-4.11.0.0", SCALAR
“pandoc-citeproc-0.13"]))

http://www.yaml.org/spec/1.2/spec.html

YAML Final Structure

extra-deps:
- hakyll-4.11.0.0
- pandoc-citeproc-0.13

Conclusion

What we need to do now is just run stack install without manually editing the YAML file. There will
be more advantage from this project.

How it Works

How could that the last item in the “extra-deps” sequence got an exactly the same indentation with
its previous item? Since our library will transform it back to the same as its YAML style before,
here is how the transformation process goes.

Tokens

MAP

SEQUENCE
SCALAR . - EOF

EOL SPACES -

First, we retrieve the YAML tokens from the lexical analyzer. That's how | represent the tokens. We
keep the tokens in the safe place since we will need this later.

YAML Data Structure

YAML

Second, we retrieve the YAML data structure from the parser. Suppose that the YAML above has
been manipulated by the user. then, we want to transform the YAML data structure to its original
YAML structure. The main idea is to transform the YAML data structure into a list of YAML tokens.
We use the current list of tokens as the reference.

MAP

SEQUENCE
SCALAR - — EOF

EOL SPACES - -

o \®

\ YAML \
\ MAP

SCALAR

r

Here is our program checking for the similarity between the YAML data structure and the YAML
tokens. For each YAML context, such as SCALAR (EOL, EOF, and SPACES are excluded), we keep it.
Let it be a previousContext. Then, the current position of the “iteration” will be currentContext.

1. The program now walking from YAML to the MAP. We check the tokens. We found a MAP in
the 2nd position of the tokens. Then, we take the first argument of the MAP in the YAML
data structure (which is SCALAR) and compare it with the previousContext.

2. Then, we check the SCALAR (from the YAML data structure in the MAP) with the
previousContext which is a SCALAR as well. Not surprisingly, it is matched. Therefore, we
are in the right place.

MAP
SEQUENCE
SCAAR 1| EoL |—| spaces |— - — EOF
f
YAML /
MAP /
SEQUENCE
SCALAR

We walk to the MAP tokens. There are EOL, SPACES, and SEQUENCE. Since EOL and SPACES are
not a YAML context, we ignore them and then end up in the last tokens which are SEQUENCE. We
duplicating the YAML tokens and replace the SEQUENCE with the new one. It is a SEQUENCE with
two SCALAR items. Hence, even if it is not a SEQUENCE, suppose a SCALAR, we will replace it with

SCALAR.

MAP

SCALAR i

EOL

SPACES

EvisET)

SEQUENCE
—| EOF

extra-deps

rﬂf; \

pandoc-citeproc-0.13

hakyll-4.11.0.0

Here is our latest list of YAML tokens. Please remember that our past tokens are not replaced with
this one since we are duplicating it first. A curve line in the tokens above representing as a
“reference”. That is the last step. Transform latest tokens into its original form.

extra-deps:d
. ..- hakyll-4.11.0.0
.. .,— pandoc-citeproc-0.13

Conclusion

The main idea is to check the similarity between the YAML tokens and the YAML data structure.
We also need to use “reference” to determine how the new item will be written. Therefore, we get
an exactly the same style and structure.

Timeline

April 23,2018 - May 14,2018

- Read and learn more about YAML Spec.

- Read and learn more about correctness proof.

- Learn and implement more simple lexical analyzer.

- Learn and implement more simple parser.

- Deciding communication method with the mentor.

- Deciding correctness proof “framework” with the mentor.
- Writing first GSoC blog post.

May 14,2018 - June 15,2018

- Work on the lexical analyzer.

- Designing YAML native data structure.
- First attempt to prove the code.

- Communicate with the mentor.

June 11-15, 2018

- Writing second GSoC blog post.
- Communicate with the mentor.
- Designing parser.

June 15,2018 - July 9, 2018

- Work on the parser.

- Communicate with the mentor.
- Second attempt to prove the code.

July 9-13,2018

- Writing third GSoC blog post.
- Communicate with the mentor.
- Designing YAML manipulation functions.

July 13,2018 - August 6, 2018

- Work on YAML manipulation functions.
- Communicate with the mentor.
- Third attempt to prove the code.

August 6 - 14,2018

- Writing forth GSoC blog post.

- Communicate with the mentor.
- Submit code.

- Makes sure all done.

Related Work

Here are some examples work that related to the proposal idea.

1. Writing a lexical analyzer and a parser generator for a simple arithmetic calculator in C++

(part 1, part 2, unfinished).
2. TBA. Haskell and/or parsing related stuff.

Code Sample

1. wisn/hapoid: Portable object translation file Linter for Bahasa Indonesia. My first Haskell
project.

2. wisn/movee: An OMDb API consumer. Programming Club exercise at Telkom University.

3. wisn/hanum: An OpenStreetMap attributes linter with custom presets. Currently,
abandoned.

4. wisn/language-po: A Format-Preserving Portable Object in Haskell.

Haskell related answers on StackOverflow could be found here. Contribution will be added later.

https://medium.com/@nurcahyo/an-undergraduate-student-story-simple-arithmetic-parser-as-a-final-task-in-c-part-1-f8023987b61b
https://medium.com/@nurcahyo/an-undergraduate-student-story-simple-arithmetic-parser-as-a-final-task-in-c-part-2-2365cb373062
https://github.com/wisn/hapoid
https://github.com/wisn/movee
https://github.com/wisn/hanum
https://github.com/wisn/language-po
https://stackoverflow.com/search?q=user:6914498+[haskell]

Personal Information

Name
Nickname
GitHub
OpenHub
StackOverflow
Email
Medium
Twitter
Occupation
Major
Timezone
Country

Work Location

Wisnu Adi Nurcahyo
Wisnu

https://qgithub.com/wisn

https://www.openhub.net/accounts/wisn
https://stackoverflow.com/users/6914498/wisnu-adi-nurcahyo

wisn.adn@gmail.com, nurcahyo@protonmail.com

https://medium.com/@nurcahyo

https://twitter.com/Wisn98

Telkom University, Undergraduate Student

Informatics Engineering, Sophomore
uTC+7
Indonesia

Bandung, Indonesia

https://github.com/wisn
https://www.openhub.net/accounts/wisn
https://stackoverflow.com/users/6914498/wisnu-adi-nurcahyo
mailto:wisn.adn@gmail.com
mailto:nurcahyo@protonmail.com
https://medium.com/@nurcahyo
https://twitter.com/Wisn98

